

0968-0896(95)00101-8

Azetidin-2-one Derivatives as Inhibitors of Thrombin

William T. Han, ** Ashok K. Trehan, J. J. Kim Wright, Marianne E. Federici, Steven M. Seiler and Nicholas A. Meanwell**

^aDivision of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, 5, Research Parkway, Wallingford, CT, 06492-7660, U.S.A.

Abstract—A series of 3-(3-guanidinopropyl)-azetidin-2-one derivatives was prepared and evaluated as inhibitors of cleavage of synthetic substrates in vitro by the serine proteases thrombin, trypsin and plasmin. The N-unsubstituted, 4-phenethyl derivative 9a demonstrated weak inhibition of these enzymes but acetylation of the β -lactam N atom afforded 9b, an effective, time-dependent inhibitor of thrombin and a potent inhibitor of plasmin. Variation of the 4-position of the β -lactam ring was examined in conjunction with different N-substituents to provide a series of potent, time-dependent inhibitors of thrombin. A C-4 substituent was essential for good inhibitory properties and, in general, polar C-4 substituents enhanced the selectivity of inhibition for thrombin compared to plasmin. A trans relationship between the C-4 and C-3 substituents was found to be superior to a cis disposition whilst homologation of the guanidinopropyl side chain to that of a guanidinobutyl moiety reduced activity. Several compounds were effective inhibitors of thrombin-induced clot formation in human plasma in vitro but activity in this assay did not correlate well with inhibition of thrombin-induced cleavage of a synthetic substrate, presumably a consequence of inherent chemical instability and degradation in plasma.

Introduction

Thrombin (Factor IIa, EC 3.4.21.5) is a serine protease activated by factor Xa-mediated cleavage of prothrombin and is the final product of the coagulation cascade. 1-3 Although thrombin is most prominently associated with blood coagulation, it plays a central and complex role in the regulation of hemostasis since it is also involved in clot dissolution.⁴ While early investigations defined thrombin as a key mediator of venous thrombosis, more recent studies have clarified its role in the etiology of arterial thrombosis and restenosis injury. As a consequence, inhibitors of thrombin are of potential clinical value for the prevention and treatment of both venous and arterial thrombotic episodes.⁵ Thrombin activates blood coagulation and clot formation by cleaving several peptidic substrates, including fibrinogen, factor V, factor VIII and factor IX, that promote clot development and factor XIII, which contributes to clot stabilization. Thrombin also cleaves and activates a receptor on the surface of platelets, smooth muscle and endothelial cells. 6-8 At the molecular level, thrombin preferentially cleaves its substrates at the carboxamide moiety of the basic amino acids arginine and lysine. Potent and selective inhibitors of thrombin directed to the active site of the enzyme have been synthesized that take advantage of this recognition element and are frequently arginine or lysine derivatives. 9-13 Several of these agents have been evaluated in animal models of thrombosis in an effort to determine their potential as anti-thrombotic and anticoagulant agents. 9-13 MD 805 (argatroban, 1) is a

competitive inhibitor of thrombin that has emerged from this approach and has been advanced into clinical trials. In addition, several classes of inhibitor have been synthesized that take advantage of mechanistic aspects of thrombin action to produce enzymenihibitor complexes that are either transiently or permanently covalently associated. Included in this class are boronic acids, 17 α -halo ketones, $^{18-24}$ cyclic anhydrides, 25 cyclic lactones, $^{26-28}$ activated ketone derivatives and the aldehydes $\bf 2a$, 30 $\bf 2b$ 30,31 and $\bf 2c$.

β-Lactam derivatives have been described as potent, mechanism-based inhibitors of serine proteases with the emphasis of these studies directed towards identifying inhibitors of human leucocyte elastase. ³³⁻⁴⁸ Examples of this structural class of enzyme inhibitor are the cephalosporin 3^{34} and the mono-bactam derivative $4.^{36}$ In this article, we describe the preparation and biological evaluation of a series of β-lactam derivatives ⁴⁹⁻⁵¹ that incorporate structural elements designed to be recognized by thrombin and related serine proteases. Many of these compounds are highly potent and time-dependent inhibitors of thrombin and establish a foundation for the further development of this pharmacophore.

Chemistry

The 3,4-disubstituted azetidin-2-one 7 was identified as a versatile synthetic intermediate and was prepared by the route depicted in Scheme 1. Heating a mixture of N,N'-dicarbobenzyloxy-S-methylisothiourea⁵² (5) and 5-

^bDepartment of Cardiovascular Biochemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, P.O. Box 4000, Princeton, NJ 08543-4000, U.S.A.

1 (MD 805, Argatroban)

2a R = NH₂, GYKI 14166 **2b** R = NHCH₃, GYKI 14766 **2c** R = H, BMY 44621

aminopentanoic acid in methanol at reflux⁵³ provided 5-[N', N"-bis (carbobenzyloxy) guanidino] pentanoic acid which was esterified, using carbonyldiimidazole⁵⁴ and MeOH, to give the methyl ester 6. Construction of the β-lactam ring followed previously described synthetic protocols⁵⁵⁻⁵⁹ that comprised treating a solution of 6 in THF at -78 °C with a base followed by the addition of 1, 1, 1-trimethylsilyl-N-(3-phenyl-2-propen-1-ylidene)silanamine⁶⁰ to afford a mixture of the azetidin-2-ones 7 and 8. The use of less than three equivalents of lithium bis(trimethylsilyl)amide in this reaction failed to provide appreciable quantities of the cyclized products, suggesting that the essential reacting species was a trianion. The azetidin-2-ones 7 and 8 were produced in a ratio of 4:1 as judged from the ¹H NMR spectrum and the two compounds were separated by careful column chromatography. The relative stereochemical relationships between the ring substituents of 7 and 8 were assigned after examining the ¹H NMR spectra. ^{61,62} The ring proton α to the amide carbonyl of the chromatographically more mobile isomer, which constituted the major component, resonated at δ 3.97, upfield of the corresponding proton in the isomeric material which resonated at δ 4.32, consistent with the structural assignments in Scheme 1.61,62 In addition, the coupling constant between the azetidinone ring protons was larger for the minor component 8 than the major isomer 7.61,62

The guanidino protecting groups of 7 were removed by catalytic hydrogenation which, concomitantly, saturated the olefin moiety to afford the target compound 9a. Acetylation of the β -lactam nitrogen atom of 7, using NaHDMS as the base, prior to hydrogenation furnished the activated azetidinone 9b.

The \beta-lactam 7 was converted into the carboxylic acid derivatives 10 and 11, useful synthetic precursors to several target compounds, by the methods outlined in Scheme 2. For the preparation of 10, the azetidin-2-one nitrogen atom was protected as its TBDMS derivative and the olefin cleaved by treating with O₃ in CH₂Cl₂ at -78 °C. The intermediate aldehyde was oxidized using Jones reagent in acetone, conditions under which the sensitive N-silicon bond was unstable, to afford the acid 10. Esterification of 10, using diazomethane in Et₂O, followed by derivatization of the β-lactam nitrogen (except for the preparation of 12a) and deprotection of the guanidino moiety, afforded the series of esters 12a-e. Alternatively, coupling of the acid 10 with an amine, mediated by carbonyl-diimidazole,54 was followed by functionalization of the β-lactam nitrogen atom and deprotection to furnish the amides 14a,c,d. The piperidinamide 14b, in which the azetidinone ring substituents are cis-disposed, was obtained from the cissubstituted β-lactam 8 using an identical synthetic protocol. A complementary strategy, in which the \betalactam nitrogen was acetylated prior to ozonolysis of the olefin and Jones oxidation, was adopted to prepare the carboxylic acid 11. Amide bond formation, using either a mixed anhydride or diphenylphosphoryl azide, was followed by hydrogenolysis of the Cbz protecting groups to afford the amides 14e-g. Alternatively, hydrogenolytic deprotection of 11 provided the acid 13.

As depicted in Scheme 3, oxidative decarboxylation^{56,61} of 10 afforded the acetate 15, isolated as an inseparable mixture of *cis* and *trans* isomers. Functionalization of the azetidinone nitrogen atom and subsequent catalytic hydrogenation provided the target compounds 16a-c.

The acetoxy moiety of 15 was readily displaced by thiol nucleophiles, $^{64.65}$ which provided the sulfides 17. Acetylation of 17, using LiHMDS or NaHMDS as the base, gave the sulfides 18. Catalytic hydrogenation of the ethyl sulfide provided the target compound 19 whilst oxidation of the sulfur atom followed by deprotection afforded the sulfones 20a and 20b. The thioether 17a (R = Et) was desulfurized by treatment with Raney nickel, the β -lactam N atom derivatized with acetyl chloride or dansyl chloride and the Cbz protecting groups removed by hydrogenolysis, to furnish target compounds 21a and 21b, respectively.

Compound 23, the immediate homologue of 12c, was prepared by an identical synthetic approach with the exception that 6-aminohexanoic acid was employed as a starting material (Scheme 4). The β -lactam derivatives that constitute this study are compiled in Table 1.

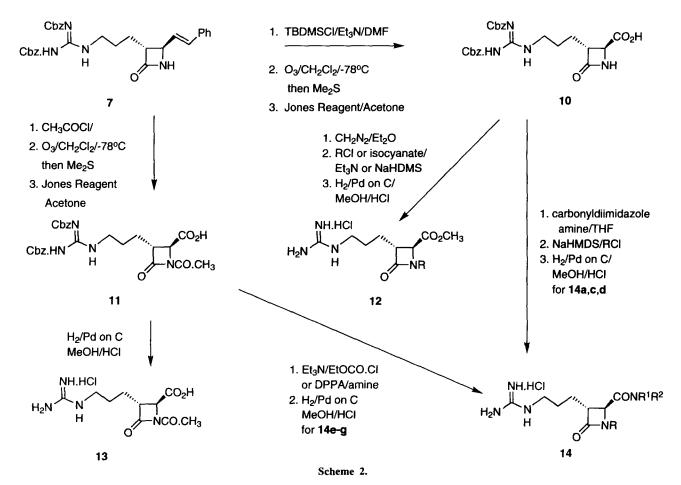
Biological Evaluation

The target compounds were evaluated as inhibitors of thrombin cleavage of the synthetic substrate s-2238 (D-Phe-Pip-Arg-p-nitroanilide). Since many of these β-

lactam derivatives demonstrated time-dependent inhibitory activity, the IC₅₀ reported in Table 1 represents the concentration of drug required to inhibit thrombininduced substrate cleavage by 50% following a three minute incubation period of the drug with the enzyme. For those compounds demonstrating time-dependent inhibition of thrombin, the second-order rate constant k_2/K_i (M⁻¹ min⁻¹) for inactivation of the enzyme was determined.⁶⁷ The IC₅₀s reported for the inhibition of trypsin and plasmin were determined in a fashion analogous to that described for thrombin.

The effect of drugs on the clotting time of human plasma was determined by adding human thrombin to human plasma in the presence of various concentrations of the drug. The concentration of drug required to double the time to clot formation, compared to drug-free control, was calculated and is presented in Table 1.

Results and Discussion


In an effort to identify potential inhibitors of thrombin and other trypsin-like serine proteases, the effect of combining an arginine-like side chain with an electro-

philic azetidin-2-one ring was examined. This combination was designed to take advantage of structural elements associated with both the primary recognition pocket of the enzyme and the amino acid residues intimately involved in catalytic function.

The synthetic compounds were evaluated for their ability to inhibit thrombin, trypsin and plasmin and the results are presented in Table 1. In general, these compounds are potent and effective inhibitors of thrombinand trypsin-like serine proteases. The data presented in Table 1 provide insight into the funda-mental structureactivity relationships for this structural class of enzyme inhibitor. The structure-activity study summarized in Table 1 focuses primarily on the effect of variation of the azetidin-2-one nitrogen activating group and modification of the 4-substituent of the β-lactam ring. The 4-phenethyl derivative 9a, in which the β -lactam nitrogen is unsubstituted, is a relatively weak inhibitor of thrombin with a K_i estimated to be about 25 μ M. This figure is an estimate because the inhibition of thrombin by 9a shows some time-dependence. However, the bimolecular rate constant, k_2/K_i , of 1760 is small compared to more reactive serine protease inhibitors of this structural type. 36-40 This result suggested that activation of the azetidin-2-one ring may be necessary in order to increase its reactivity towards the serine hydroxyl of the catalytic triad and enhance enzymatic inactivation. This indeed proved to be the case since

the N-acetyl derivative 9b is a considerably more effective, time-dependent inhibitor of thrombin. The bimolecular rate constant, k_2/K_i , for **9b** is substantially greater than for the unactivated \(\beta\)-lactam 9a, reflecting the increased electrophilicity of the azetidinone ring. In a more physiologically relevant situation, 9b is a reasonably effective inhibitor of thrombin-induced clot generation in plasma since it doubles clotting time at a concentration of 3 µM. Although 9b is a similarly effective inhibitor of trypsin, it is 50-fold more potent as an inhibitor of the clot dissolving enzyme plasmin. From the perspective of identifying and developing an effective anti-thrombotic agent, this specificity profile is clearly less than desirable but provided a clear goal for the further development of structure-activity relationships.

Replacing the phenethyl moiety of 9a with a more polar carbomethoxy group led to a compound 12a that is a much less effective inhibitor of thrombin. However, acetylation of the β -lactam N atom not only markedly increased potency but also provided a compound, 12b, that more selectively inhibited thrombin. Although 12b effectively inhibits trypsin at similar concentrations, this β -lactam derivative is approximately 1500-fold selective for thrombin over plasmin. As a consequence, the focus of further study was directed towards the elaboration of polar groups as the C-4 substituent. A series of analogues, 12c-e, was prepared and evaluated

Scheme 4.

in order to explore the role of the β -lactam activating functionality of 12b on enzyme inhibitory potency and selectivity. Within this series, both tosyl (12c) and dansyl (12d) N-substituents provide potent inhibitors of thrombin and trypsin but at the expense of selectivity for these enzymes when compared to plasmin. The phenylurea 12e is a considerably weaker inhibitor of thrombin, an observation that presumably reflects the reduced electron-withdrawing capacity of this substituent and the associated diminished electrophilicity of the β -lactam ring. $^{36-38}$

The carboxy ester of 12b provided a convenient functionality for further structural elaboration and facilitated a structure-activity study of this region of the pharmacophore. The free carboxylic acid 13 is a significantly less potent inhibitor of thrombin than its methyl ester 12b but retains the potent inhibitory activity towards trypsin that characterizes 12b. An

amide substituent at C-4 generally afforded potent inhibitors of both thrombin and trypsin that are weak inhibitors of plasmin, providing a series of compounds 14a-g with good to excellent enzyme inhibitory selectivity. In the single example where a direct comparison can be made, compound 14a, a trans disposition of the functionality at C-3 and C-4 of the β-lactam ring is approximately 10-fold superior to its cis-configured isomer 14b. Within the series of amides 14a-g, Nsulfonyl substituted β-lactam derivatives appear to be the more effective inhibitors of thrombin cleavage of s-2231 synthetic substrate than N-acetyl derivatives. However, this increased activity does not translate to the clotting assay where the N-sulfonyl compounds 14c and 14d are inferior to the N-acetyl analogue 14a, possibly reflecting reduced stability of 14c and 14d in plasma.

The C-4 acetoxy-substituted β -lactam 16a is a potent

Table 1. Structure of azetidin-2-one derivatives and their associated enzyme inhibitory activity and effects on blood clotting

Compd #*	R	R¹	IC ₅₀ versus thrombin cleavage of s-2231 (μ M)	k ₂ /K ₁ (M ⁻¹ min ⁻¹)	Concen- tration of compound to double clotting time (µM)	K ₅₀ versus trypsin (μM)	KC ₅₀ versus plasmin (μM)
9a	CH ₂ CH ₂ Ph	Н	$K_{\rm i} \sim 25$	1760		> 100	72
9b	CH ₂ CH ₂ Ph	COCH ₃	0.21	1.5×10^{6}	3.0	0.47	0.0042
12a	CO ₂ CH ₃	Н	$K_{\rm i} > 100$	330		NT	NT
12b	CO ₂ CH ₃	COCH ₃	0.002	1.9×10^{7}	1.25	0.04	3
12c	CO ₂ CH ₃	SO ₂ C ₆ H ₄ CH ₃	0.002-0.009	1.2×10^{8}	65	0.008	0.09
12d	CO ₂ CH ₃	dansyl	0.016	2.1×10^{7}	50	0.72	1.2
12e	CO ₂ CH ₃	CONH-Ph	1.7	8.3×10^4	30	0.005	NT
13	CO ₂ H	COCH,	0.39	NT	12	0.012	
14a) N	COCH ₃ [†]	0.09	4.2×10^{5}	0.5	0.009	3.13
14b	_N	COCH ₃ [‡]	NT	4.3×10^4	20	NT	TM
14c	°N√°	SO ₂ C ₆ H ₄ CH ₃	0.003	4.5×10^7	80	0.12	0.75
14d	<u>»</u> м	dansyl	0.01	2.8 × 10 ⁶	30	0.014	12
14e	CONH-C ₆ H ₄ CH ₃	COCH ₃	0.025	1.3×10^{6}	0.5	0.12	7
14f	O HO ₂ C	COCH ₃	0.049	4.3 × 10 ⁶	1.25	NT	NT
14g	CONH-CH₂CO₂H	COCH ₃	0.012	2×10^{7}	0.43	NT	NΓ
16a	OCO-CH ₃	COCH ₃ [§]	0.012	4.2×10^{7}	0.34	0.012	0.39
16b	OCO-CH ₃	COPh	0.035	1	10.0	NT	NT
16c	OCO-CH ₃	Boc**	0.074	2.4×10^{6}	2	NT	NT
19	SCH, CH ₃	COCH,	0.0125	5.6×10^6	0.75	0.036	1.56
20a	SO ₂ CH ₂ CH ₃	COCH ₃	0.0028	3.0×10^6	1.2	NT	NT
20b	SO ₂ Ph	COCH ₃	0.0032	3×10^6	15	0.12	0.75
21a	H	COCH ₃	0.1	2.5×10^5	4.0	NT	NΓ
21b	H	dansyl	1		30	NT	
23	CO ₂ CH ₃ ^{+†}	dansyl	•	3.7×10^{5}	50	NT	NT
1(MD 805)			0.038		0.042		
2 (BMY 44621)			0.39		0.46		

^{*}All compounds are racemic. A single enantiomer is shown for purposes of clarity. NT = not tested.

inhibitor of thrombin that exhibits a profile comparable to its isomer 12b. The inhibitory activity of 16a is not highly sensitive to the identity of the azetidinone N-substituent since 16b and 16c are also potent inhibitors of thrombin-mediated cleavage of the tripeptide synthetic substrate. However, in human plasma, the N-acetyl derivative is the superior inhibitor of thrombin-induced clot formation. It should be emphasized that

the β -lactams 16a-c were evaluated as mixtures of *cis* and *trans* isomers, with the *trans* isomer predominant based on an analysis of ¹H NMR spectral data. If the inhibitory activity in this series demonstrates a similar dependence on the stereochemical relationship of the β -lactam C-3 and C-4 substituents as the amides 14a and 14b, then the activity of the more effective isomer is underestimated.

[†]Evaluated as the trans isomer.

[‡]Evaluated as the cis isomer.

Evaluated as a 2:1 mixture of trans:cis isomers.

Evaluated as a 3:1 mixture of trans:cis isomers.

¹Inhibition of thrombin rapidly reversed.

^{**}Evaluated as a 3:2 mixture of trans:cis isomers.

^{††}Guanidinobutyl side chain rather than guanidinopropyl.

The short series of C-4 sulfur-substituted β -lactams 19, 20a and 20b, demonstrated potent inhibitory activity towards thrombin and, where comparisons can be made, reasonable enzyme selectivity. Inhibition of thrombininduced clot formation by this series of compounds showed some dependency on the identity of the 4-substituent with the alkyl derivatives 19 and 20a superior to the phenylsulfone 20b.

Two additional aspects of the structure-activity relationships associated with this series of thombin inhibitors are evident from the potency of compounds 21a, 21b and 23. The relatively weak inhibitory activity of the structurally simpler azetidinones 21a and 21b further underlines the importance of a 4-substituent on the β -lactam ring. The 10-fold weaker activity of 23 compared to its immediate homologue 12d indicates a dependence on the relationship between the guanidino moiety and the β -lactam carbonyl, which appears to be optimal with the propyl spacer.

The correlation between inhibition of thrombin cleavage of a synthetic substrate by this series of β-lactam derivatives and the increase in thrombin-induced clotting time is limited. Although many of these azetidinones are highly potent inhibitors of thrombin cleavage of the tripeptide substrate s-2231, comparable to both MD 805 (1) and BMY 44621 (2), many are considerably weaker inhibitors in the clotting assay where the efficacy of 1 and 2 is readily apparent. This observation presumably reflects the stabilities of the individual compounds in human plasma since several of these \(\beta \)-lactam derivatives were sensitive to exposure to plasma where they appeared to be easily deactivated. Despite these potential limitations, ip administration of 14g to rats at doses of 10 and 30 mg Kg⁻¹ resulted in a doubling of blood clotting time measured ex vivo 30 minutes after drug delivery.

It was established early on in this study that attachment of the arginine-like chain at C-3 of the β -lactam ring was critical since representative examples of the 4-substituted isomers 24, with n=2 or 3, were ineffective inhibitors of thrombin. This finding is consistent with the topological relationships established for a series of β -lactam-based inhibitors of human leucocyte elastase. Those studies concluded that the C-3 substituent of β -lactam serine protease inhibitors is accommodated in the S_1 pocket, the primary recognition site of the enzyme. The support for this contention, synthetic intermediates in which the guanidine moiety of these β -lactam derivatives was protected with Cbz or modified with other functionality, were either inactive or only poorly active.

Conclusion

In summary, we have developed synthetic approaches to a series of β-lactam derivatives that incorporate an arginine-like side chain, a structural element recognized by trypsin-like serine proteases. Many of these compounds are potent and time-dependent inhibitors of thrombin-induced cleavage of a synthetic substrate in vitro, extending the versatility of \(\beta-lactam derivatives as inhibitors of serine protease inhibitors. In human plasma, all of the compounds inhibited thrombininduced clot formation but only at concentrations considerably higher than those required to inhibit thrombin in the isolated enzyme assay. These observations are presumably reflective of the inherently high chemical reactivity of the activated \(\beta\)-lactam ring, essential for the expression of potent and effective enzyme inhibitory activity but also a possible source of instability in plasma. Nevertheless, ip administration of 14g to rats resulted in a significant increase in clotting time measured ex vivo, suggesting that this class of thrombin inhibitor can express activity in vivo. Whilst the chemical and biological properties of the specific βlactam derivatives compiled in Table 1 may limit their therapeutic potential, this investigation nevertheless provides a useful foundation for further structural modification and development. This study constitutes the first description of β -lactam derivatives as rationally designed inhibitors of thrombin and firmly establishes the viability of this approach to the generation of potential anti-thrombotic agents. Careful structural elaboration of these azetidinone derivatives is required with the objective of tempering the chemical reactivity of the β-lactam ring while simultaneously enhancing the affinity of these compounds for thrombin. This can be accomplished by incorporating recognition elements that selectively and effectively complement functionality present both in the active site of thrombin and the immediate vicinity. The implementation of this strategy will ultimately lead to compounds with enhanced plasma stability and increased specificity for thrombin.68

Experimental

Melting points were recorded on a Thomas-Hoover capillary apparatus and are uncorrected. Proton (1H NMR) magnetic resonance spectra were recorded on either a Bruker AM or a Varian Gemini FT instrument operating at 300 MHz. All spectra were recorded using tetramethylsilane as an internal standard and signal multiplicity was designated according to the following abbreviations: s = singlet, d = doublet, t = triplet, q = tripletquartet, m = multiplet, bs = broad singlet. Infrared (IR) spectra were obtained using a Perkin-Elmer 1800 FT IR, scanning from 4000 to 400 cm⁻¹ and calibrated to the 1601 cm⁻¹ absorption of a polystyrene film. Mass spectral data were obtained on a Finnigan Model 4500 GC-MS using electrical or chemical ionization (isobutane) procedures. Fast atom bombardment (FAB) mass spectra were obtained on a Kratos MS 25

spectrometer using meta-nitrobenzyl alcohol (NOBA) as the matrix. Analytical samples were dried in vacuo at 78 °C or in the presence of P₂O₅ at room temperature for at least 12 h. Elemental analyses were provided by the Analytical Chemistry Department, Bristol-Myers Squibb or Oneida Research Services, Whitesboro, NY. Unless otherwise stated, an extractive work-up procedure comprised extraction of the aqueous layer with solvent (three times), washing the combined extracts with H₂O (usually a single time except where DMF or AcOH was present when the organic phase was washed three times) and drying over Na₂SO₄ or MgSO₄ prior to evaporation of the solvent in vacuo.

5-[N',N"-bis(Carbobenzyloxy)guanidino]pentanoic acid

5-Aminovaleric acid (86.9 g, 0.74 mol) was added portionwise to a solution of 5 (323 g, 0.9 mol) and Et₃N (75.1 g, 0.74 mol) in MeOH (1 L). The resultant suspension was heated at reflux for 1.5 h, concentrated and the residue partitioned between EtOAc and saturated aqueous NaHCO₃ solution. The aqueous layer was acidified to pH 2.0 with HCl and extracted with EtOAc to give a solid. Recrystallization from a mixture of EtOAc and hexane afforded the title compound (135.1 g, 54% based on 5-aminovaleric acid), mp 102–103 °C. IR (KBr) 1735, 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 1.80 (4H, m), 2.40 (2H, bt, J = 4.8 Hz), 3.45 (2H, bq, J = 6.5Hz), 5.13 (2H, s), 5.18 (2H, s), 7.25–7.43 (10H, m), 8.35 (1H, bs). Anal. calcd for $C_{22}H_{25}N_3O_6$: C, 61.81; H, 5.89; N, 9.83; found: C, 61.39; H, 6.29; N, 9.92.

5-[N',N"-bis(Carbobenzyloxy)guanidino]pentanoic acid, methyl ester (6)

Carbonyldiimidazole (55.3 g, 0.34 mol) was added portionwise to a solution of 5-[N',N"-bis(carbobenzyloxy)guanidino]pentanoic acid (133 g, 0.3 mol) in THF (700 mL) maintained at 0 °C under an atmosphere of N₂. After the addition was complete, the mixture was warmed to room temperature and stirred for 45 min before adding anhydrous MeOH (100 mL). The solution was stirred for 16 h, concentrated in vacuo and the residue triturated with Et₂O (400 mL). The supernatant was separated and the process repeated twice using 200 mL portions of Et₂O. The Et₂O phases were combined, washed with H₂O, dried over MgSO₄ and concentrated. The residue was chromatographed on a column of silica gel using a mixture of Et₂O and hexane (1:1) as eluant to afford 6 (130 g, 95%), mp 36-39 °C. IR (KBr) 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 1.24–1.50 (4H, m), 2.32 (2H, bt, J = 4.9 Hz), 3.42 (2H, bq, J = 4.9 Hz), 3.64 (3H, s), 5.09 (2H, s), 5.15 (2H, s), 7.46-7.21 (10H, m), 8.36-8.28 (1H, bs). Anal. calcd for C₂₃H₂₇N₃O₆: C, 62.54; H, 6.15; N, 9.51; found: C, 62.64; H, 6.03; N, 9.37.

trans-4-(2-Phenylethenyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone (7) and cis-4-(2-phenylethenyl)-3[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone (8)

n-Butyllithium in hexane (272 mL of a 2.5 M solution, 0.69 mol) was added to a solution of 1,1,1,3,3,3-hexa-

methyldisilazane (110.0 g, 0.69 mol) in THF (800 mL) maintained at -40 °C under an atmosphere of N2. The mixture was cooled to -78 °C and a solution of 6 (106.0 g, 0.24 mol) in THF (300 mL) added dropwise. After the addition was complete, the mixture was stirred at -30 °C for 1 h, cooled to -78 °C and a solution of 1,1,1trimethyl-N-(3-phenyl-2-propen-1-ylidene)silanamine (51.50 g, 0.25 mol) in THF (100 mL) added dropwise. The mixture was stirred at -20 °C for 16 h, concentrated to half of its original volume and diluted with Et₂O and 5 N HCl solution. Additional 5 N HCl solution was added to the stirred mixture as necessary to maintain the pH of the aqueous phase at 2.0. The organic phase was separated, washed with H₂O and brine, dried over MgSO₄ and concentrated. The residue was chromatographed on a column of silica gel to afford 7 (50.0 g, 38%), mp 101 °C. IR (film) 1734 cm⁻¹; ¹H NMR $(CDCl_3)$ δ 1.70–1.85 (4H, m), 3.01 (1H, m), 3.45–3.56 (2H, m), 3.97 (1H, bd, J = 8.0 Hz), 5.15 (2H, s), 5.22 (2H, s), 6.27 (1H, dd, J = 14.5 Hz, J = 8.0 Hz), 6.58 (1H, s), 6.66 (1H, d, J = 14.5 Hz), 7.24-7.50 (15H, m), 8.43 (1H, bt, J = 4.0 Hz). Anal. calcd for $C_{31}H_{32}N_4O_5$: C, 68.86; H, 5.96; N, 10.36; found: C, 68.91; H, 5.94; N, 10.29.

Further elution gave a mixed fraction (26.5 g, 20%) followed by **8** (5.70 g, 4.4%). IR (film) 1760, 1745 cm⁻¹; ¹H NMR (CDCl₃) δ 1.50–1.78 (4H, m), 3.25–3.48 (3H, m), 4.32 (1H, t, J = 7.2 Hz), 5.05 (2H, s), 5.07 (2H, s), 5.95 (1H, bs), 6.12 (1H, dd, J = 14.5, 7.2 Hz), 7.14–7.37 (15H, m), 8.27 (1H, bt, J = 5.6 Hz). High resolution FABMS m/z calcd for C₃₁H₃₃N₄O₅: 541.2451 (MH⁺); found: 541.2441.

trans-4-(2-Phenylethyl)-3-(3-guanidinopropyl)-2-azetidinone hydrochloride salt (9a)

A mixture of 7 (350 mg, 0.65 mmol), MeOH (20 mL), 1 N HCl (0.65 mL) and 10% Pd/C was stirred under an atmosphere of H_2 at 50 psi. After 16 h, the mixture was filtered through a pad of Celite and solvent evaporated to afford **9a** as a colorless foam. IR (film) 1735 cm⁻¹; ¹H NMR (D₂O) δ 1.35–1.51 (4H, m), 1.61–1.79 (2H, m), 2.37–2.60 (3H, m), 2.98 (2H, bt, J = 5.40 Hz), 3.17 (1H, bt, J = 6.65 Hz), 7.06–7.20 (5H, m).

trans-4-(2-Phenylethenyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 7.64 mL) was added dropwise to a solution of 7 (4.1 g, 7.64 mmol) in THF (20 mL) stirred at -78 °C under N₂. After 15 min acetyl chloride (600 mg, 7.6 mmol) was added, the solution warmed to room temperature and stirred for 75 min. The mixture was diluted with aqueous buffer (pH 4.0), extracted with Et₂O and the residue chromatographed on a column of silica gel. Elution with a mixture of Et₂O and hexane (3:1) afforded the title compound (2.30 g, 52%). IR (film) 1780, 1735, 1710 cm⁻¹; ¹H NMR (CDCl₃) δ 1.65–1.90 (4H, m), 2.38 (3H, s), 3.00–3.10 (1H, m), 3.40–3.53 (2H, m), 6.20 (1H, dd, J = 15.3 Hz, J = 7.7 Hz), 6.68

(1H, d, J = 15.3 Hz), 7.20–7.43 (15H, m), 8.36 (1H, bs). Anal. calcd for $C_{33}H_{34}N_4O_6$: C, 68.03; H, 5.88; N, 9.62; found: C, 68.05; H, 5.99; N, 9.30. High resolution FABMS m/z calcd for $C_{33}H_{34}N_4O_6$: 583.2556 (MH⁺); found: 583.2543.

trans-4-(2-Phenylethyl)-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (9b)

A mixture of trans-4-(2-phenylethenyl)-3-[3-[N,N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (470 mg, 0.82 mmol), MeOH (3 mL), EtOAc (1 mL), 1 N HCl (0.9 mL) and a catalytic quantity of 10% Pd/C was stirred under an atmosphere of H₂ until TLC indicated the disappearance of starting material (about 30 min). The mixture was filtered through a pad of Celite and concentrated to afford **9b** (220 mg, 76%). IR (film) 1770, 1710 cm⁻¹; ¹H NMR (CD₃OD, selected peaks) δ 2.30 (3H, s), 3.72–3.87 (1H, m), 7.10–7.50 (5H, m). High resolution FABMS m/z calcd for $C_{17}H_{25}N_4O_2$: 317.1977 (MH⁺); found: 317.1971.

trans-4-(2-Phenylethenyl)-3-[3-[N',N"-bis(carbobenzyl-oxy)guanidino]propyl]-1-(text-butyldimethylsilyl)-2-azeti-dinone

tert-Butyldimethylsilyl chloride (3.12 g, 21 mmol) was added to a stirred solution of 7 (7.80 g, 14.4 mmol) and Et₃N (2.10 g, 21 mmol) in DMF (40 mL). The mixture was stirred at room temperature for 15 h, diluted with H₂O and extracted with Et₂O. The residual oil was chromatographed on a column of silica gel using a mixture of Et₂O and hexane (1:1) as eluant to afford the title compound (8.30 g, 88%). ¹H NMR (CDCl₃) δ 0.10 (3H, s), 0.16(3H, s), 0.88(9H, s), 1.65-1.90(4H, m), 2.95-3.04 (1H, m), 3.41-3.45 (2H, m), 3.86 (1H, dd, J =9.9 Hz, J' = 1.5 Hz), 5.13 (2H, s), 5.60 (2H, s), 6.17 (1H, dd, J = 16 Hz, J = 9.9 Hz), 6.58 (1H, d, J = 16 Hz), 7.23–7.45 (15H, m), 8.37 (1H, t, J = 4.5 Hz). Anal. calcd for $C_{37}H_{46}N_4O_5Si$: C, 67.86; H, 7.08; N, 8.56; found: C, 67.12; H, 7.06; N, 8.21. High resolution FABMS m/z calcd for $C_{37}H_{46}N_4O_5Si: 655.3316 \text{ (MH}^+);$ found: 655.1295.

trans-4-Carboxy-3-[3-[N',N"-bis(carbobenzyloxy)guani-dino]propyl]-2-azetidinone (10)

Ozone was bubbled through a stirred solution of trans-4-(2-phenylethenyl)-3-[3-[N',N''-bis(carbobenzyloxy)guanidino]propyl]-1-(tert-butyldimethylsilyl)-2-azetidinone (55.0 g, 84 mmol) in CH₂Cl₂ (650 mL) maintained at -78 °C until a blue color persisted. Excess ozone was purged with N₂, Me₂S (60 mL) was added and the solution allowed to warm to room temperature. The mixture was allowed to stand for 48 h before being concentrated to afford crude trans-4-formy1-3-[3-[N', N"-bis(carbobenzyloxy)guanidino]prop-yl]-1-(tertbutyldimethylsilyl)-2-azetidinone which was directly. ¹H NMR (CDCl₃) δ 0.13 (3H, s), 0.20 (3H, s), 0.97 (9H, s), 1.65-1.93 (4H, m), 3.21-3.28 (1H, m),3.40-3.53 (2H, m), 3.67 (1H, m), 5.13 (2H, s), 7.25-7.60 (10H, m), 5.17 (2H, s), 8.40 (1H, bt, J = 5.3 Hz), 9.63 (1H, d, J = 5.3 Hz).

The aldehyde obtained was dissolved in acetone (75 mL) and freshly prepared Jones reagent was added dropwise, while maintaining the temperature between 20 and 25 °C, until TLC indicated the disappearance of starting material. The suspension was concentrated to half of its original volume and partitioned between EtOAc and $\rm H_2O$. The organic phase was separated, dried over $\rm Na_2SO_4$ and concentrated. The residual solid was recrystallized from EtOAc/hexane to afford 10 (8.80 g, 54% overall from 7), mp 172–173 °C. ¹H NMR (CDCl₃) δ 1.50–1.70 (4H, m), 3.74 (1H, d, d) = 1.8 Hz), 4.99 (2H, d), 5.17 (2H, d), 7.20–7.45 (10H, d), 8.24 (1H, d), 8.43 (1H, d), bs). High resolution FABMS d0 calcd for d0, 483.1880 (MHd1); found: 483.1880.

trans-4-(Methoxycarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone

A solution of CH_2N_2 in Et_2O was added to a solution of **10** (4.69 g, 9.72 mmol) in CH_2Cl_2 (50 mL) until the yellow color was maintained. Excess CH_2N_2 was destroyed by adding CH_3CO_2H , the solution was concentrated and the residue chromatographed on a column of silica gel. Elution with a mixture of EtOAc and Et_2O (9:1) afforded the title product (3.41 g, 71%). ¹H NMR (CDCl₃) δ 1.70–1.95 (4H, m), 3.22–3.31 (1H, m), 3.42–3.54 (2H, m), 3.77 (3H, s), 3.88 (1H, d, J=2.4 Hz), 5.13 (2H, s), 5.18 (2H, s), 6.27 (1H, bs), 7.25–7.45 (10H, m), 8.38 (1H, t, J=5.3 Hz). Anal. calcd for $C_{25}H_{28}N_4O_7$: C, 60.47; H, 5.68; N, 11.28; found: C, 60.36; H, 5.76; N, 11.26.

trans-4-(Methoxycarbonyl)-3-(3-guanidinopropyl)-2-azetidinone hydrochloride salt (12a)

A mixture of *trans*-4-(methoxycarbonyl)-3-[3-[N,N"-bis-(carbobenzyloxy)guanidino]propyl]-2-azetidinone (135 mg, 0.27 mmol), MeOH, 1 N HCl (0.5 mL) and 10% Pd/C was stirred under an atmosphere of H₂ at 40 psi. After 16 h the mixture was filtered through a pad of Celite and concentrated to afford **12a** (30 mg, 42%). IR (film) 1760, 1740 cm⁻¹; ¹H NMR (D₂O) δ 1.69–1.88 (4H, m), 3.22 (2H, bt, J = 6.3 Hz), 3.32–3.40 (1H, m), 3.77 (3H, s), 4.12 (1H, d, J = 1.95 Hz). FABMS m/z 229 (MH⁺).

trans-4-(Methoxycarbonyl)-3-[3-[N',N"-bis(carbobenzyl-oxy)guanidino]propyl]-1-acetyl-2-azetidinone

Et₃N (12.30 g, 0.12 mol) was added dropwise to a vigorously stirred solution of acetyl chloride (9.50 g, 0.12 mol) and trans-4-(methoxycarbonyl)-3-[3-[N,N-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone (2.00 g, 4.0 mmol) in CH₂Cl₂ (50 mL) maintained at -10 °C. After the addition was complete, the mixture was stirred at room temperature for 2 h before being diluted with H₂O. The organic phase was separated, washed with saturated NaHCO₃ solution, dried over Na₂SO₄ and concentrated. The residue was subjected to chromatography on a column of silica gel using a mixture of CH₂Cl₂ and MeOH (99.5:0.5) as eluant to furnish the title compound (700 mg, 36%). IR (film)

1800, 1740, 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 1.60–1.93 (4H, m), 2.34 (3H, s), 3.15–3.26 (1H, m), 3.38–3.47 (2H, m), 3.37 (3H, s), 4.08 (1H, d, J = 2.3 Hz), 5.07 (2H, s), 5.14 (2H, s), 7.20–7.37 (10H, m), 8.32 (1H, bt, J = 5 Hz); High resolution FABMS m/z calcd for $C_{27}H_{31}N_4O_8$: 539.2125 (MH⁺); found: 539.2142.

trans-4-(Methoxycarbonyl)-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (12a)

A solution of trans-4-(methoxycarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino] propyl] -1-acetyl-2-azetidinone (313 mg, 0.58 mmol) in MeOH (2.5 mL), EtOAc (2.5 mL) and 1 N HCl (0.58 mL) was stirred under a H_2 atmosphere over 10% Pd/C catalyst. When the starting material had disappeared as determined by TLC, the reaction mixture was filtered through a pad of Celite and concentrated to afford 12a (150 mg, 84%) as a yellow foam. IR (film) 1800 cm⁻¹; ¹H NMR (CD₃OD) δ 1.60–1.90 (4H, m), 2.35 (3H, s), 3.10–3.50 (3H, m), 3.78 (3H, s), 4.27 (1H, d, J = 3.1 Hz). High resolution FABMS m/z calcd for $C_{11}H_{18}O_4$: 271.1406 (MH⁺); found: 271.1404.

trans-4-(Methoxycarbonyl)-3-[3-[N',N"-bis(carbobenzyl-oxy)guanidino]propyl]-1-(p-toluenesulfonyl)-2-azetidin-one

Sodium bis(trimethylsilyl)amide (0.67 mL, 0.67 mmol) in THF was added to a stirred solution of trans-4-(methoxycarbonyl)-3-[3-[N,N"-bis(carbobenzyloxy)guanidino|propyl]-2-azetidinone (436 mg, 0.67 mmol) in THF (5 mL) maintained at -78 °C under an atmosphere of N₂. After 15 min, p-toluenesulfonyl chloride (134 mg, 0.70 mmol) was added, the mixture stirred at -78 °C for 4 h and then at -20 °C for 2.5 days. The mixture was partitioned between EtOAc and H₂O and the organic layer separated and dried over Na₂SO₄. The solvent was and the residue was evaporated purified chromatography on a column of silica gel. Elution with a mixture of Et₂O and hexane (3:2) afforded the title compound (210 mg, 48%). IR (film) 1805, 1735 cm⁻¹; ¹H NMR (CDCl₃) δ 1.55–1.85 (4H, m), 2.42 (3H, s), 3.13-3.23 (1H, m), 3.35-3.45 (2H, m), 3.72 (3H, s), 4.28(1H, d, J = 1.5 Hz), 4.98 (1H, bs), 5.06 (2H, s), 5.10(2H, s), 7.20-7.40 (14H, m), 7.88 (1H, d, J = 8.4 Hz), 8.32 (1H, bt, J = 6.1 Hz). Anal. calcd for $C_{32}H_{34}N_4O_9S$: C, 58.77; H, 5.14; N, 8.14; found: C, 59.06; H, 5.26; N, 8.61.

trans-4-(Methoxycarbonyl)-3-(3-guanidinopropyl)-1-(p-toluenesulfonyl)-2-azetidinone hydrochloride salt (12b)

A solution of trans-4-(methoxycarbonyl)-3-[3-[N,N"-bis(carbobenzyloxy) guanidino]propyl]-1-(p-toluene-sulfonyl)-2-azetidinone (197 mg, 0.3 mmol) in EtOAc (2.5 mL), MeOH (2.5 mL) and 1 N HCl (0.6 mL) was stirred under an atmosphere of H_2 over 10% Pd/C catalyst until TLC indicated the disappearance of the starting material. The suspension was filtered through a pad of Celite and concentrated to afford 12b (30 mg, 24%) as a foam. IR (film) 1800, 1755 cm⁻¹; ¹H NMR

(CD₃OD) δ 1.56–1.86 (4H, m), 2.46 (3H, s), 3.16 (2H, t, J = 6.6 Hz), 3.42 (1H, dt, J = 7.2 Hz, J' = 3.6 Hz), 3.74 (3H, s), 4.47 (1H, d, J = 3.6 Hz), 7.44 (2H, d, J = 8.5 Hz), 7.88 (2H, d, J = 8.5 Hz). Anal. calcd for C₁₆H₂₄N₄O₅Cl: C, 44.18; H, 5.33; N, 12.88; Cl, 8.15; found: C, 43.79; H, 5.62; N,12.52; Cl, 8.01. High resolution FABMS m/z calcd for C₁₆H₂₄N₄O₅Cl: 383.1389 (MH⁺); found: 383.1376.

tra ns-4-(Methoxycarbonyl)-3-[3-[N',N''-bis(carbobenzyl-oxy)guanidino]propyl]-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 N in THF, 2.08 mL, 2.08 mmol) was added dropwise to a solution of trans-4-(methoxycarbonyl)-3-[3-[N',N"-bis-(carbobenzyloxy)guanidino]propyl]-2-azetidinone (1.03 g, 2.08 mmol) in THF (5 mL) stirred at -78 °C under an atmosphere of N₂. After 20 min dansyl chloride (0.50 g, 2.08 mmol) was added, the mixture was allowed to warm to room temperature and stirred for 1 h. Aqueous buffer, pH 7.0, was added, the mixture extracted with EtOAc and the residue subjected to chromatography on a column of silica gel. Elution with Et₂O afforded the title compound (0.45 g, 30%). IR (KBr) 1810, 1755 cm⁻¹; ¹H NMR (CDCl₃) δ 1.53–1.86 (4H, m), 2.84 (6H, s), 3.24-3.31 (1H, m), 3.33-3.42 (2H, m), 3.46 (3H, s), 4.22 (1H, d, J = 2.3 Hz), 5.08 (2H, s), 5.16 (2H, s),7.15-7.45 (11H, m), 7.49-7.63 (2H, m), 8.28 (1H, d, J =6.9 Hz), 8.47 (1H, d, J = 9.2 Hz), 8.61 (1H, d, J = 8.4Hz). FABMS m/z 730 (MH+).

trans-4-(Methoxycarbonyl)-3-(3-guanidinopropyl)-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone hydrochloride salt (12c)

A mixture of *trans*-4-(methoxycarbonyl)-3-[3-[N',N''-bis-(carbobenzyloxy) guanidino]-propyl]-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone (0.45 g, 0.62 mmol), MeOH (5 mL), EtOAc (2 mL), 1 N HCl (0.7 mL) and 10% Pd/C catalyst was stirred under an atmosphere of H₂. After 25 min, the mixture was filtered through a pad of Celite and concentrated to afford 12c (276 mg, 89%). IR (KBr) 1805, 1755 cm⁻¹; ¹H NMR (CD₃OD) δ 1.30-1.60 (4H, m), 2.77 (6H, s), 1.84-3.09 (3H, m), 3.19 (3H, s), 4.20 (1H, d, d) = 2.3 Hz), 7.28 (1H, dd, d) = 6.9 Hz), 7.40-7.53 (2H, m), 8.08 (1H, d, d) = 7.7 Hz), 8.38 (1H, d, d) = 9.2 Hz), 8.46 (1H, d, d) = 8.4 Hz). High resolution FABMS m/z calcd for $C_{21}H_{28}N_5O_5S$: (MH⁺) 462.1811; found: 462.1801.

trans-1-(Methoxy carbonyl)-3-[3-[N',N''-bis(carbobenzyl-oxy)guanidino]propyl]-1-[(phenylamino)carbonyl]-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 0.149 mL, 0.149 mmol) was added dropwise to a solution of trans-4-(methoxycarbonyl)-3-[3-[N',N"-bis-(carbobenzyloxy)guanidino]propyl]-2-azetidinone (690 mg, 1.38 mmol) in THF (10 mL) stirred at -78 °C under an atmosphere of N₂. After 10 min, phenylisocyanate (0.149 mL, 1.38 mmol) was added, the mixture

warmed to room temperature and stirred for 1 h. The solution was concentrated, the residue was diluted with aqueous buffer (pH 4.0) and extracted with EtOAc to give an oil. Chromatography on a column of silica gel using a mixture of Et₂O and hexane (3:1) as eluant afforded the title compound (450 mg, 53%) as a white foam. IR (KBr) 1780, 1732 cm⁻¹; ¹H NMR (CDCl₃) δ 1.68–2.00 (4H, m), 3.26–3.36 (1H, m), 3.40–3.53 (2H, m), 3.78 (3H, s), 4.23 (1H, d, d) = 2.3 Hz), 5.05 (2H, s), 5.17 (2H, s), 7.03–7.53 (15H, d). High resolution FABMS m/z calcd for $C_{32}H_{34}H_5O_8$: (MH⁺) 616.2407; found: 616.2413.

trans-1-(Methoxycarbonyl)-3-(3-guanidinopropyl)-1-[(phenylamino)carbonyl]-2-azetidinone hydrochloride salt (12d)

A mixture of trans-1-(methoxycarbonyl)-3-[3-[N,N"-bis(carbobenzyloxy) guanidino]propyl]-1-[(phenylamino)carbonyl]-2-azetidinone (421 mg, 0.68 mmol), MeOH (2.5 mL), EtOAc (2.5 mL), 1 N HCl (0.68 mL) and 10% Pd/C was stirred under an atmosphere of H₂ for 1 h. The mixture was filtered through a pad of Celite and concentrated to afford the title compound (270 mg, 100%) as a yellow foam. IR (KBr) 1780, 1740 cm⁻¹; ¹H NMR (CD₃OD) δ 1.73–1.98 (4H, m), 3.21–3.51 (3H, m), 3.82 (3H, s), 4.38 (1H, d, d) = 2.8 Hz), 7.09–7.49 (5H, d). High resolution FABMS m/z calcd for $C_{16}H_{22}O_4N_5$: (MH⁺) 348.1672; found: 348.1679.

trans-4-(1-Piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone

Carbonyldiimidazole (400 mg, 2.5 mmol) was added to a stirred solution of **10** (1.00 g, 2.1 mmol) in THF (20 mL). After 30 min piperidine (0.21 g, 2.5 mmol) was added, the mixture stirred for 1 h and concentrated. The residue was diluted with 1 N HCl solution and extracted with EtOAc to give an oil. Chromatography on a column of silica gel using EtOAc as the eluant afforded the title compound (720 mg, 62%). ¹H NMR (CDCl₃) δ 1.30–1.85 (10H, m), 3.05 (7H, m), 3.05–3.55 (7H, m), 3.93 (1H, s), 5.01 (2H, s), 5.07 (2H, s), 7.10–7.32 (10H, s), 8.32 (1H, s), 5.1 Hz). High resolution FABMS m/z calcd for $C_{29}H_{36}H_5O_6$: (MH⁺) 550.2666; found: 550.2656.

trans-4-(1-Piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 0.65 mL, 0.65 mmol) was added to a solution of trans-4-(1-piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone (334 mg, 0.61 mmol) in THF (10 mL) stirred at -78 °C under N₂. After 15 min acetyl chloride (47.4 mg, 0.6 mmol) was added, the mixture warmed to room temperature and stirred for 30 min. The solvent was evaporated, the residue diluted with aqueous buffer (pH 4.0) and extracted with EtOAc to give an oil. Chromatography on a column of silica gel using a mixture of Et₂O and

EtOAc (3:1) afforded the title compound (155 mg, 78%). IR (film) 1795, 1735, 1720 cm⁻¹; ¹H NMR δ 1.30–1.85 (10H, m), 2.33 (3H, s), 3.18–3.28 (1H, m), 3.30–3.62 (6H, m), 4.43 (1H, bs), 5.04 (2H, s), 5.13 (2H, s), 7.18–7.36 (10H, m), 8.33 (1H, bt, J = 5.3 Hz). High resolution FABMS m/z calcd for C₃₁H₃₈N₅O₇: (MH⁺) 592.2771; found: 592.2765.

trans-4-(1-Piperidinylcarbonyl)-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (14a)

A mixture of trans-4-(1-piperidinylcarbonyl)-3-[3-[N',N''-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (150 mg, 0.27 mmol), MeOH (3 mL), 1 N HCl (0.27 mL) and 10% Pd/C was stirred under an atmosphere of H₂ for 5 min. The mixture was filtered through a pad of Celite and concentrated to afford **14a** (66 mg, 68%). IR (film) 1795, 1710 cm⁻¹; ¹H NMR (D₂O) δ 1.23–1.97 (10H, m), 2.38 (3H, s), 3.22–3.76 (7H, m), 4.93 (1H, bs). High resolution FABMS m/z calcd for C₁₅H₂₆O₃N₅: 324.2035; found: 324.2030.

trans-4-(1-Piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl] -1-(p-toluenesulfonyl)-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 0.7 mL) was added dropwise to a stirred solution of trans-4-(1-piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone (379 0.69 mmol) in THF (10 mL) maintained at -78 °C under an atmosphere of N₂. After 20 min p-toluenesulfonyl chloride (131 mg, 0.69 mmol) was added and the mixture warmed to room temperature. The solvent was evaporated, the residue diluted with aqueous buffer (pH 4.0) and extracted with EtOAc to give an oil. Chromatography on a column of silica gel gave the title compound (160 mg, 33%). IR (KBr) 1802, 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 1.40–1.85 (10H, m), 2.37 (3H, s), 3.15-3.23 (1H, m), 3.32-3.54 (6H, m), 4.70 (1H, d, J =1.5 Hz), 5.07 (2H, s), 5.14 (2H, s), 7.22-7.40 (10H, m), 7.28 (2H, d, J = 8.4 Hz), 7.87 (2H, d, J = 8.4 Hz). High resolution FABMS m/z calcd for C₃₆H₄₂N₅O₈S: (MH⁺) 704.2754; found: 704.2767.

trans-4-(1-Piperidinylcarbonyl)-3-(3-guanidinopropyl)-1-(p-toluenesulfonyl)-2-azetidinone hydrochloride salt (14c)

A mixture of trans-4-(1-piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-(p-toluenesulfonyl)-2-azetidinone (157 mg, 0.22 mmol), EtOAc (2.5 mL), MeOH (2.5 mL), 1 N HCl (0.22 mL) and 10% Pd/C was stirred under an atmosphere of H₂ for 10 min. The mixture was filtered through a pad of Celite and concentrated to afford **14c** (70 mg, 67%). IR (KBr) 1800, 1740 cm⁻¹; ¹H NMR (CD₃OD) δ 1.50–1.90 (10H, m), 2.44 (3H, s), 3.10–3.74, (7H, m), 5.06 (1H, d, J = 2.6 Hz), 7.42 (2H, d, J = 8.3 Hz), 7.86 (2H, d, J = 8.3 Hz). High resolution FABMS m/z calcd for $C_{20}H_{30}N_5O_4S$: (MH⁺) 436.2018; found: 436.2011.

trans-4-(1-Piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 1.25 mL, 1.25 mmol), was added dropwise to a stirred solution of trans-4-(1-piperidinylcarbonyl)-3-[3-[N', N"-bis(carbobenzyloxy)guanidino[propyl]-2-azetidinone (640 mg, 1.16 mmol) in THF (12 mL) maintained at -78 °C under N₂. After 20 min a solution of dansyl chloride (320 mg, 1.17 mmol) in THF (20 mL) was added and the mixture stirred at room temperature for 45 min. The solvent was evaporated, the residue diluted with aqueous buffer (pH 4.0) and extracted with EtOAc to give an oil. Chromatography on a column of silica gel using Et₂O as eluant furnished the title compound (380 mg, 42%). IR (KBr) 1800, 1737 cm⁻¹; ¹H NMR (CDCl₃) δ 1.35–1.87 (10H, m), 2.84 (6H, s), 3.27–3.55 (7H, m), 4.68 (1H, d, J = 1.6 Hz), 5.09 (2H, s), 5.16 (2H, s), 7.15 (1H, d, J = 6.3 Hz), 7.26-7.35 (10H, m), 7.51 (1H, t, J = 6.7 Hz), 7.56 (1H, t, J = 6.7 Hz), 8.26 (1H, d, J = 6.0 Hz), 8.45 (1H, d, J = 7.2 Hz), 8.57 (1H, d, J = 7.2 Hz)d, J = 7.1 Hz). High resolution FABMS m/z calcd for $C_{41}H_{47}N_6O_8S$: (MH⁺) 783.3176; found: 783.3162.

trans-4-(1-Piperidinocarbonyl)-3-(3-guanidinopropyl)-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone hydrochloride salt (14d)

A mixture of *trans*-4-(1-piperidinylcarbonyl)-3-[3-[N,N"-bis(carbobenzyloxy)guanidino]propyl]-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone (360 mg, 0.48 mmol), MeOH (3 mL), EtOAc (1.5 mL), 1 N HCl (0.55 mL), and 10% Pd/C was stirred under an atmosphere of H₂ for 10 min. The mixture was filtered through a pad of Celite and concentrated to afford **14d** (196 mg, 73%). IR (KBr) 1800, 1735 cm⁻¹; ¹H NMR (CD₃OD) δ 1.43–1.92 (10H, m), 3.22 (6H, s), 3.06–3.42 (4H, m), 3.50–3.72 (3H, m), 5.07 (1H, d, d) = 2.1 Hz), 7.76–7.81 (3H, d), 8.36 (1H, d), d) = 7.0 Hz). High resolution FABMS m/z calcd for $C_{25}H_{35}N_6O_4$: (MH⁺) 515.2441; found: 515.2438.

trans-1-Formy l-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone

Ozone was bubbled through a solution of trans-4-(2phenylethenyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (0.70 g, 1.2 mmol) in CH₂Cl₂ (20 mL) stirred at -78 °C until a blue color was maintained. Excess ozone was removed by purging the solution with N₂, and Me₂S (1 mL) was added. The mixture was warmed to room temperature, allowed to stand for 72 h, and the solvent evaporated. The residue was chromatographed on a column of silica gel using a mixture of Et₂O and EtOAc (3:1) as eluant to afford the title product (230 mg, 38%). IR (film) 1797, 1734, 1703 cm⁻¹; ¹H NMR (CDCl₃) δ 1.50–1.94 (4H, m), 2.40 (3H, s), 3.20-3.30 (1H, m), 3.30-3.56 (2H, m), 4.17 (1H, bs), 5.10 (2H, s), 5.17 (2H, s), 7.50-7.20 (10H, m), 9.70 (1H, s). High resolution FABMS m/z calcd for $C_{26}H_{29}N_4O_7$ (MH⁺): 509.2036; found: 509.2031.

trans-4-Carboxy-3-[3-[N',N"-bis(carbobenzyloxy)guani-dino]propyl]-1-acetyl-2-azetidinone (11)

Freshly prepared Jones reagent was added dropwise to a solution of trans-4-formyl-3-[3-[N',N''-bis(carbobenzyl-oxy)guanidino]propyl]-1-acetyl-2-azetidinone (3.50g, 6.8 mmol) in acetone (70 mL) until TLC indicated the disappearance of the starting material. The acetone layer was decanted, the residual solid washed with acetone and organic phases combined and concentrated. The residue was chromatographed on a column of silica gel using a mixture of EtOAc and MeOH (99:1) to afford 11 (2.40 g, 66%). H NMR (CDCl₃) δ 1.65–1.96 (4H, m), 2.40 (3H, s), 3.17–3.26 (1H, m), 3.39–3.50 (2H, m), 4.13 (1H, d, d) = 2.3 Hz), 5.11 (2H, d), 5.17 (2H, d), 7.11–7.40 (10H, d). High resolution FABMS m/z calcd for $C_{26}H_{29}N_4O_8$ (MH⁺): 525.1985; found: 525.1991.

trans-4-[[(4-Methylphenyl)amino]carbonyl]-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azeti-dinone

Diphenylphosphoryl azide (DPPA)⁶³ (550 mg, 2 mmol) was added to a solution of **11** (700 mg, 1.34 mmol) and *p*-toluidine (210 mg, 2 mmol) in DMF (3.5 mL) stirred at -5 °C. The mixture was stirred for 30 min, warmed to room temperature and stirred for 1.5 h before being diluted with H₂O and extracted with Et₂O. The residual oil was chromato-graphed on a column of silica gel using a mixture of Et₂O and hexane (2:1) as eluant to afford the title compound (150 mg, 18%). ¹H NMR (CDCl₃) δ 1.62–2.00 (4H, *m*), 2.28 (3H, *s*), 2.42 (3H, *s*), 3.27–3.70 (3H, *m*), 4.43 (1H, *d*, J = 2.3 Hz), 5.07 (2H, AB quartet), 5.17 (2H, *s*), 7.03 (2H, *d*, J = 8.4 Hz), 7.20–7.40 (10H, *m*), 7.24 (2H, *d*, J = 8.4 Hz). High resolution FABMS m/z calcd for C₃₃H₃₆N₅O₇: 614.2615 (MH⁺); found: 614.2602.

trans-4-Carboxy-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (13)

A solution of compound 11 (200 mg, 0.38 mmol) in MeOH (3 mL), EtOAc (0.5 mL) and 1 N HCl (0.5 mL) was hydrogenated over 10% Pd/C until TLC indicated the disappearance of the starting material (15 min). The mixture was filtered through a pad of Celite and the filtrate concentrated to afford 13 (37 mg, 33%). IR (KBr) 1800, 1709 cm⁻¹; ¹H NMR(CD₃OD) δ 2.02–1.74 (4H, m), 2.35 (3H, s), 3.20–3.37 (3H, m), 4.18 (1H, d, J = 3.3 Hz). High resolution FABMS m/z calcd for C₁₀H₁₉N₄O₄: 257.1250 (MH⁺); found: 257.1244.

trans-4-[[(4-Methylphenyl)amino]carbonyl]-3-(3-guani-dinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (14e)

A mixture of trans-4-[(4-methylphenyl)amino]carbonyl]-3-[3-[N',N''-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (150 mg, 0.25 mmol), MeOH (2 mL), EtOAc (0.5 mL), 1 N HCl (0.28 mL) and a catalytic quantity of 10% Pd/C was stirred under H₂

until TLC indicated the disappearance of the starting material (10 min). The mixture was filtered through a pad of Celite and the solvent evaporated to leave 14e (70 mg, 73%). IR (KBr) 1802 cm⁻¹; ¹H NMR (CD₃OD) δ 1.59–1.91 (4H, m), 2.29 (3H, s), 2.37 (3H, s), 3.20–3.39 (3H, m), 4.32 (1H, d, J = 3.2 Hz), 7.12 (2H, d, J = 7.2 Hz), 7.45 (2H, d, J = 7.2 Hz). High resolution FABMS m/z calcd for $C_{17}H_{24}N_5O_3$: 346.1879 (MH⁺); found: 346.1875.

trans-4-[[2-[(Phenylmethoxy)carbonyl]-1-pyrrolidinyl]-carbonyl]-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]-propyl]-1-acetyl-2-azetidinone

Et₂N (0.112 g, 1.1 mmol) was added to a stirred solution of ethyl chloroformate (0.12 g, 1.1 mmol) and 11 (0.35 g, 0.7 mmol) in CH₂Cl₂ (5 mL) maintained at -5 °C. The mixture was stirred for 1 h at -5 °C to +5 °C before adding Et₃N (0.11 g, 1.1 mmol) and proline benzyl ester hydrochloride (260 mg, 1.1 mmol). After 15 min the mixture was warmed to room temperature and stirred for 16 h. The mixture was washed with saturated NaHCO₃ solution, dried over MgSO₄ and concentrated. The residue was subjected to chromatography on a column of silica gel using a mixture of Et₂O and EtOAc (8:2) as eluant to afford the title compound (70 mg, 14%). H NMR (CDCl₃) δ 1.50–2.24 (8H, m), 2.29 (3/2H, s), 2.34 (3/2H, s), 3.17–3.92 (6H, m), 4.20–4.26 (1/2H, m), 4.43– 4.60 (1/2H, m), 5.03-5.18 (6H, m), 7.13-7.40 (15H, m).High resolution FABMS m/z calcd for C₃₈H₄₂N₅O₉: 712.2990 (MH⁺); found: 712.2982.

trans-4-[(2-Carboxy-1-pyrrolidinyl)carbonyl]-3-(3-guani-dinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (14f)

A mixture of trans-4-[[2-[(phenylmethoxy)carbonyl]-1-pyrrolidinyl]carbonyl]-3-[3-[N',N''-bis(carbobenzyloxy)-guanidino]propyl]-1-acetyl-2-azetidinone (150 mg, 0.2 mmol), MeOH (2 mL), EtOAc (0.5 mL), 1 N HCl (0.2 mL) and a catalytic quantity of 10% Pd/C was stirred under H₂ for 1.5 h. The mixture was filtered through a pad of Celite and concentrated to afford **14f** (47 mg, 60%). IR (KBr) 1800, 1712 cm⁻¹; ¹H NMR (CD₃OD) δ 1.63-2.13 (8H, m), 2.32 (1.5H, s), 2.33 (1.5H, s), 3.15-3.42 (5H, m), 3.50-3.58 (0.5 H, m), 3.92-4.04 (0.5H, m), 4.33 (0.25H, d, d) = 2.7 Hz), 4.40-4.45 (0.25H, d), 4.49-4.52 (0.25H, d), 4.59 (0.25H, d), 4.59 (0.25H, d), 4.29 Hz).

trans-4-[[[2-Oxo-2-(phenylmethoxy)ethyl]amino]carbon-yl]-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone

Et₃N (530 mg, 0.13 mmol) in CH_2Cl_2 (2 mL) was added to a solution of 11 (220 mg, 0.44 mmol) and ethyl chloroformate (57 mg, 0.53 mmol) in CH_2Cl_2 (2 mL) stirred at -10 °C. The mixture was stirred between -5 °C and +5 °C for 1 h before adding glycine benzyl ester hydrochloride (0.11 g, 0.64 mmol) and Et_3N (0.53 g, 13 mmol). The mixture was stirred at room temperature for 21 h, filtered and the solid washed with CH_2Cl_2 . The

combined organic phase was washed with 1 N HCl, dried over MgSO₄ and concentrated. The residue was chromatographed on a column of silica gel using a mixture of Et₂O and EtOAc (9:1) as eluant to afford the title compound (140 mg, 47%). IR (film) 1798, 1738, 1715 cm⁻¹; ¹H NMR (CD₃OD) δ 1.50–2.00 (4H, m), 2.39 (3H, s), 3.17–3.27 (1H, m), 3.28–3.38 (1H, m), 3.57 (1H, dd, J = 18.1 Hz, J' = 4.8 Hz), 3.63–3.82 (1H, m), 4.13 (1H, dd, J = 18.1 Hz, J' = 6.6 Hz), 4.26 (1H, dd, dd = 3.2 Hz), 5.00–5.30 (6H, dd), 7.18–7.43 (15H, dd).

4-[[(2-Hydroxy-2-oxoethyl)amino]carbonyl]-3-(3-guani-dinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (14g)

A mixture of trans-4-[[[2-oxo-2-(phenylmethoxy)ethyl]-a mino]carbonyl]-3-[3-[N,N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (240 mg, 0.36 mmol), MeOH, EtOAc, 1 N HCl (0.4 mL) and a catalytic quantity of 10% Pd/C was stirred under H₂ for 1 h. The mixture was filtered through a pad of Celite and concentrated to afford **14g** (55 mg, 44%). IR (KBr) 1802, 1758, 1720, 1670 cm⁻¹; ¹H NMR (CD₃OD) δ 1.58–1.97 (4H, m), 2.35 (3H, s), 3.13–3.38 (3H, m), 3.85–4.08 (2H, m), 4.24 (1H, d, J = 3.3 Hz). High resolution FABMS m/z calcd for C₁₂H₂₀N₅O₅: 314.1469 (MH⁺); found: 314.1460.

cis-4-(2-Phenylethenyl)-3-[3-[N',N"-bis(carbobenzyloxy)-guanidino]propyl]-1-(text-butyldimethylsilyl)-2-azetidinone

Et₃N (1.73 g 17 mmol) and *tert*-butyldimethylsilyl chloride (1.86 g, 12 mmol) were added to a stirred solution of **8** (5.60 g, 10.4 mmol) in DMF (30 mL). After 1 h the mixture was diluted with H₂O and extracted with Et₂O. The organic layer was dried over MgSO₄ and concentrated, and the residue subjected to chromatography on a column of silica gel. Elution with a mixture of Et₂O and hexane (3:2) afforded the title compound (4.73 g, 78%). ¹H NMR (CDCl₃) δ 0.14 (3H, s), 0.23 (3H, s), 0.94 (9H, s), 1.51-1.84 (4H, m), 3.26-3.50 (3H, m), 4.11 (2H, s), 4.22 (1H, dd, J = 8.4 Hz, J = 6.1 Hz), 5.08 (2H, s), 6.02 (1H, dd, J = 15.2 Hz, J = 8.4 Hz), 6.57 (1H, d, J = 15.2 Hz), 7.21-7.39 (15H, m), 8.30 (1H, dt, d) = 5.4 Hz). High resolution FABMS m/z calcd for C₁₇H₄₇N₄O₅Si: 655.3316 (MH⁺); found: 655.3323.

cis-4-Carboxy-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone

Ozone was bubbled through a solution of cis-4-(2-phenylethenyl)-3-[3-[N', N''-bis(carbobenzyloxy) guanidino]-propyl]-1-(tert-butyldimethylsilyl)-2-azetidinone (4.73 g, 7.22 mmol) in CH_2Cl_2 (100 mL) maintained at -78 °C until a blue color persisted. Excess ozone was purged with N_2 , Me_2S (10 mL) was added and the solution allowed to stand for 16 h. Concentration afforded cis-4-formyl-3-[3-[N',N''-bis(carbobenzyloxy)-guanidino]propyl]-1-(tert-butyldimethysilyl)-2-azetidinone which was used without further purification.

The aldehyde was dissolved in acetone (50 mL) and Jones reagent added dropwise until an orange color persisted. The reaction mixture was stirred for 15 min, concentrated and the residue partitioned between H_2O and EtOAc. The organic layer was separated, dried over MgSO₄ and concentrated. The residue was chromatographed on a column of silica gel using a mixture of Et_2O , EtOAc and AcOH (4:1:0.05) as eluant to afford the title compound (1.80 g, 51%). ¹H NMR ($CDCl_3$) δ 1.80–1.50 (4H, m), 3.10–3.50 (3H, m), 4.19 (1H, d, d) = 6.9 Hz), 5.07 (2H, d), 5.17 (2H, d), 6.70 (1H, d), 7.10–7.45 (10H, d), 8.4 (1H, d). High resolution FABMS d/m/z calcd for d/C₂₄H₂₇N₄O₇: 483.1880 (MH⁺); found: 483.1878.

cis-4-(1-Piperidiny lcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy) guanidino] propyl]-2-azetidinone

Carbonyldiimidazole (0.53 g, 3.24 mmol) was added to a solution of cis-4-carboxyl-3-[3-[N,N"-bis(carbobenzyl-oxy)guanidino]propyl]-2-azetidinone (1.30 g, 2.7 mmol) in THF (12 mL). The mixture was stirred for 35 min, piperidine (230 mg, 2.7 mmol) added, and the mixture stirred for an additional 1 h. The solvent was evaporated, the residue partitioned between EtOAc and 0.5 N HCl and extracted. The organic phase was dried over MgSO₄, concentrated and the residue chromatographed on a column of silica gel to afford the title compound (360 mg, 24%). ¹H NMR (CDCl₃) δ 1.40–1.90 (10H, m), 3.02–3.52 (7H, m), 4.33 (1H, d, J = 5.4 Hz), 5.03 (2H, s), 5.12 (2H, s), 7.18–7.38 (10H, m).

cis-4-(1-Piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenz-yloxy)guanidino]propyl]-1-acetyl-2-azetidinone

Sodium bis(trimethylsilyl)amide in THF (0.65 mL of a 1 N solution) was added to a stirred solution of cis-4-(1piperidinylcarbonyl)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone (360 mg, 0.65 mmol) in THF (2 mL) maintained at -78 °C under an atmosphere of N₂. The mixture was stirred for 20 min, acetyl chloride (0.05 mL, 0.7 mmol) added, and the solution warmed to room temperature. After stirring for 1 h the mixture was diluted with a mixture of Et2O and EtOAc and pH 4.0 aqueous buffer solution. The organic phase was separated, dried over MgSO₄ and concentrated. The residue was chromatographed on a column of silica gel using EtOAc as eluant to afford the title compound (240 mg, 62%). IR (KBr) 1798, 1740, 1722 cm⁻¹; ¹H NMR (CDCl₃) δ 1.34–1.86 (10H, m), 2.36 (3H, s), 3.12–3.58 (7H, m), 4.76 (1H, d, J = 6.1 Hz), 5.06 (2H, s), 5.13 (2H, s), 7.20-7.40 (10H, m). High resolution FABMS calcd for $C_{31}H_{38}N_5O_7$: 592.2711 (MH⁺); found: 592.2769.

cis-4-(1-Piperidinylcarbonyl)-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (14b)

A solution of cis-4-(1-piperidinylcarbonyl)-3-[3-[N,N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (240 mg, 0.4 mmol) in MeOH (2 mL) and 1 N HCl (0.5 mL) was hydrogenated over 10% Pd/C for 15 min. The mixture was filtered through a pad of Celite

and the filtrate concentrated to afford 14b (124 mg, 86%). IR (film) 1798, 1715 cm⁻¹; ¹H NMR (CD₃OD) δ 1.50–1.92 (10H, m), 2.34 (3H, s), 3.17–3.83 (7H, m), 5.04 (1H, d, J = 6.7 Hz). High resolution FABMS calcd for C₁₅H₂₆N₅O₃: 324.2035 (MH⁺); found: 324.2032.

4-(Acetyloxy)-3-[3-[N',N"-bis(carbobenzyloxy)guani-dino]propyl]-2-azetidinone (15)

Pb(OAc)₄ (71.50 g, 160 mmol) was added in small portions to a solution of **10** (26.10 g, 54 mmol) in CH₃CO₂H (105 mL) and DMF (15 mL) at room temperature. After completing the addition the suspension was stirred at 60 °C for 5 h and then concentrated. The residue was diluted with CH₂Cl₂, filtered through a pad of Celite and the filtrate concentrated. The residue was chromatographed on a column of silica gel using a mixture of Et₂O and hexane (3:2) as eluant to give **15** (15.5 g, 57%) as a 2:1 mixture of *trans* and *cis* isomers. ¹H NMR (CDCl₃) δ 2.05 (2H, *s*), 2.07 (1H, *s*), 3.08–3.15 (1H, *m*), 3.36–3.45 (2H, *m*), 5.07 (2H, *s*), 5.13 (2H, *s*), 5.46 (2/3H, *bs*), 5.78 (1/3H, *d*, *J* = 3 Hz), 7.18–7.37 (10H, *m*). High resolution FABMS m/z calcd for C₂₅H₂₉N₄O₇: 497.2036; found: 497.2031.

4-(Acetyloxy)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 1.36 mL, 1.36 mmol) was added dropwise to a stirred solution of 15 (580 mg, 1.16 mmol; trans:cis ratio, 2:1) in THF (20 mL) maintained at -78 °C under N₂. After 10 min acetyl chloride (0.96 mL, 1.36 mmol) was added and the mixture warmed to room temperature. After 30 min the solvent was evaporated, the residue was diluted with H₂O and extracted with Et₂O to leave an oil. Chromatography on a column of silica gel using a mixture of Et₂O and hexane (4:1) afforded the title compound (420 mg, 57%) as a 2:1 mixture of trans and cis isomers. IR (film) 1803, 1758, 1723 cm⁻¹; ¹H NMR (CDCl₃) δ 1.57–1.90 (4H, m), 2.05 (1H, s), 2.08 (2H, s), 2.32 (1H, s), 2.36 (2H, s), 3.07-3.17 (1H, m), 3.40-3.52 (2H, m), 5.08 (2H, s), 5.14 (2H, s), 6.04(2/3H, d, J = 1.5 Hz), 6.52 (1/3H, d, J = 5.4 Hz), 7.20-7.42 (10H, m). High resolution FABMS m/z calcd for $C_{11}H_{20}N_4O_4$: 271.1406 (MH⁺); found: 271.1404.

4-(Acetyloxy)-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (16a)

A mixture of 4-(acetyloxy)-3-[3-[N,N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (420 mg, 0.78 mmol), MeOH (1.20 mL), EtOAc (5 mL), 1 N HCl (0.76 mL) and a catalytic quantity of 10% Pd/C was shaken in a Parr hydrogenator at 45 psi. After 2 h the mixture was filtered through a pad of Celite and concentrated to afford **16a** (170 mg, 71%) as a 2:1 mixture of *trans* and *cis* isomers. IR (film) 1805, 1760, 1720 cm⁻¹; ¹H NMR (CD₃OD) δ 1.63–1.95 (4H, m), 2.09 (2H, s), 2.11 (1H, s), 2.31 (1H, s), 2.33 (2H, s), 3.13–3.34 (3H, s), 6.11 (2/3H, s), s 1.7 Hz), 6.55 (1/3H, s), s

J = 5.0 Hz). High resolution FABMS m/z calcd for $C_{11}H_{10}N_4O_4$: 271.1406 (MH⁺); found: 271.1404.

4-(Acetyloxy)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-benzoyl-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 1.0 mL, 1.0 mmol) was added dropwise to a stirred solution of 15 (500 mg, 1 mmol) in THF (4 mL) maintained at -78 °C. After 15 min benzoyl chloride (140 mg, 1 mmol) was added, the mixture was stirred at -78 °C for 30 min at -78 °C and at room temperature for 90 min. The mixture was diluted with aqueous buffer (pH 4) and extracted with Et₂O. The residue was chromatographed on a column of silica gel using a mixture of Et₂O and hexane (2:1) as eluant to afford the title compound (200 mg, 33%) as a 3:1 mixture of trans and cis isomers. IR (film) 1866, 1749 cm⁻¹; ¹H NMR (CDCl₃) δ 1.63–1.93 (4H, m), 2.09 (0.75H, s), 2.11 (2.25H, s), 3.16-3.30 (1H, m), 3.35-3.56 (2H, m), 5.10(2H, s), 5.15 (2H, s), 6.30 (0.75H, d, J = 1.9 Hz), 6.75 (0.25H, d, J = 5.1 Hz), 7.16-7.63 (15H, m). High resolution FABMS m/z calcd for C₃₂H₃₃N₄O₈: 601.2298 (MH⁺); found: 601.2290.

4-(Acetyloxy)-3-(3-guanidinopropyl)-1-benzoyl-2-azetidinone hydrochloride salt (16b)

A mixture of 4-(acetyloxy)-3-[3-[N,N"-bis(carbobenzyloxy)guanidino]propyl]-1-benzoyl-2-azetidinone (200 mg, 0.33 mmol), MeOH, EtOAc, 1 N HCl (0.33 mL) and a catalytic amount of 10% Pd/C was stirred under an atmosphere of H₂ for 30 min. The mixture was filtered through a pad of Celite and concentrated to afford **16b** (100 mg, 82%) as a 3:1 mixture of *trans* and *cis* isomers. IR (film) 1806, 1749 cm⁻¹; ¹H NMR (CD₃OD) δ 1.58–2.06 (4H, m), 2.12 (2.25H, s), 2.14 (0.75H, s), 3.10–3.44 (3H, m), 6.32 (0.75H, d, d = 1.9 Hz), 6.76 (0.25H, d, d = 5.2 Hz), 7.42–7.68 (5H, d). High resolution FABMS m/z calcd for C₁₆H₂₁N₄O₄: 333.1563 (MH⁺); found: 333.1565.

4-(Acetyloxy)-3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-(tert-butylcarbonyl)-2-azetidinone

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 1.20 mL, 1.2 mmol) was added dropwise to a stirred solution of 15 (600 mg, 1.2 mmol; 2:1 mixture of trans:cis isomers) in THF (6 mL) maintained at -78 °C under N₂. After 15 min, pivaloyl chloride (150 mg, 1.24 mmol) was added, the solution was stirred for 30 min at -78 °C and then at room temperature for 1.5 h. The mixture was diluted with aqueous buffer (pH 4.0), extracted with Et₂O and the residual oil subjected to chromatography on a column of silica gel. Elution with a mixture of Et₂O and hexane (1:1) afforded the title compound (300 mg, 43%) as a 3:2 mixture of trans and cis isomers. IR (film) 1802, 1734, 1703 cm⁻¹; ¹H NMR $(CDCl_3) \delta 1.26 (3.6H, s), 1.28 (5.4H, s), 1.60-1.84 (4H, s)$ m), 2.04 (1.2H, s), 2.06 (1.8H, s), 2.97–3.03 (1H, m), 3.38-3.47 (2H, m), 5.08 (2H, s), 5.14 (2H, s), 6.07

(0.6H, d, J = 1.5 Hz), 6.53 (0.4H, d, J = 5.3 Hz), 7.20–7.41 (10H, m). High resolution FABMS m/z calcd for $C_{30}H_{37}N_4O_8$: 581.2611; found: 581.2603.

1-(Acetyloxy)-3-(3-guanidinopropyl)-1-(tert-butylcarbon-yl)-2-azetidinone hydrochloride salt (16c)

A mixture of 4-(acetyloxy)-3-[3-[N,N"-bis(carbobenzyloxy) guanidino]propyl]-1-(tert-butylcarbonyl)-2-azetidinone (300 mg, 0.5 mmol) MeOH, EtOAc, 1 N HCl (0.52 mL) and a catalytic quantity of 10% Pd/C was stirred under an atmosphere of H₂ for 30 min. The mixture was filtered through Celite and concentrated to afford **16c** (0.10 g, 64%) as a 3:2 mixture of trans and cis isomers. IR (KBr) 1804, 1751, 1705 cm⁻¹; ¹H NMR (CD₃OD) δ 1.26 (3.6H, s), 1.27 (5.4H, s), 1.52–1.97 (4H, m), 2.08 (1.8H, s), 2.10 (1.2H, s), 3.10–3.35 (3H, m), 6.11 (0.6H, d, d) = 1.6 Hz), 6.56 (0.4H, d), d) = 5.1 Hz). High resolution FABMS m/z calcd for $C_{14}H_{25}N_4O_4$: 313.1876 (MH⁺); found: 313.1872.

trans-4-(Ethylthio)-3-[3-[N',N"-bis(carbobenzyloxy)-guanidino]propyl]-2-azetidinone (17a)

EtSH (0.37 mL, 4.98 mmol) was added to a stirred suspension of NaH (200 mg of a 60% dispersion in mineral oil, 498 mmol) in THF (20 mL) cooled in an ice-water bath. After 10 min, the mixture was cooled to -20 °C and 15 (1.90 g, 3.83 mmol) added. The solution was warmed to room temperature, stirred for 30 min and concentrated. The residue was diluted with an aqueous buffer solution (pH 7.0) and extracted with EtOAc to leave an oil. Chromatography on a column of silica gel using Et₂O as eluant afforded 17a (718 mg, 36%). IR (film) 1764, 1738 cm⁻¹; ¹H NMR (CDCl₃) δ 1.23 (3H, t, J = 7.7 Hz), 1.60–1.85 (4H, m), 2.57 (2H, q, J = 7.7Hz), 3.05-3.13 (1H, m), 3.40-3.50 (2H, m), 4.43 (1H, d, J = 1.5 Hz), 5.07 (2H, s), 5.14 (2H, s), 7.20–7.40 (10H, m). High resolution FABMS m/z calcd for C₂₅H₃₁N₄O₅S: 499.2015 (MH⁺); found: 499.2010.

trans-4-(Ethylthio)-3-[3-[N',N"-bis(carbobenzyloxy)-guanidino]propyl]-1-acetyl-2-azetidinone (18a)

A solution of lithium bis(trimethylsilyl)amide (1 M in THF, 1.5 mmol) was added dropwise to a stirred solution of 17a (718 mg, 1.26 mmol) in THF (10 mL) maintained at -78 °C. After 10 min acetyl chloride (0.10 mL, 1.5 mmol) was added and the solution warmed to room temperature. After 1 h the mixture was concentrated, the residue diluted with an aqueous buffer solution (pH 7.0) and extracted with EtOAc. The residual oil was chromatographed on a column of silica gel using a mixture of Et₂O and hexane (1:1) as eluant to afford the title compound (615 mg, 90%). 'H NMR $(CDCl_3)$ δ 1.65–1.90 (4H, m), 2.33 (3H, s), 2.84–3.07 (3H, m), 3.40-3.52 (2H, m), 4.75 (1H, d, J = 2.3 Hz), 5.08 (2H, s), 5.16 (2H, s), 7.22-7.42 (10H, m). High resolution FABMS m/z calcd for C₂₇H₃₃N₄O₆S: 541.2121 (MH⁺); found: 541.2114.

trans-4-(Ethylthio)-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (19)

A mixture of trans-4-(ethylthio)-3-[3-[N',N"-bis(carbobenzyloxy) guanidino] propyl]-1-acetyl-2-azetidinone (117 mg, 0.19 mmol), MeOH (1.5 mL), EtOAc (1.5 mL), 1 N HCl (0.19 mL) and a catalytic quantity of 10% Pd/C was stirred under H_2 until TLC indicated the disappearance of the starting material (about 1 h). The mixture was filtered through a pad of Celite and concentrated to afford 19 (40 mg, 68%) as a foam. IR (film) 1795, 1735, 1713 cm⁻¹; H NMR (CD₃OD) δ 1.27 (3H, t, J = 7.4 Hz), 1.63–1.95 (4H, m), 2.32 (3H, s), 2.82–3.40 (5H, m), 4.93 (1H, d, J = 3.6 Hz). High resolution FABMS m/z calcd for $C_{11}H_{21}N_4O_2S$: 273.1385 (MH⁺); found: 273.1391.

trans-4-(Ethylsulfonyl)-3-[3-[N',N"-bis(carbobenzyloxy)-guanidino]propyl]-1-acetyl-2-azetidinone

mCPBA (85% pure, 500 mg, 1.93 mmol) was added in one portion to a solution of **18a** (469 mg, 0.77 mmol) in CH_2Cl_2 (5 mL). The mixture was stirred for 30 min, diluted with CH_2Cl_2 and saturated NaHCO₃ solution and the organic phase separated and dried over Na_2SO_4 . The solvent was evaporated and the residue chromatographed on a column of silica gel to afford the title compound (386 mg, 88%). IR (KBr) 1780, 1700 cm⁻¹; ¹H NMR (CDCl₃) δ 1.38 (3H, t, J = 8.4 Hz), 1.67–1.98 (4H, m), 2.40 (3H, s), 3.18–3.62 (4H, m), 3.70–3.80 (1H, m), 4.93 (1H, d, J = 2.3 Hz), 5.10 (2H, AB quartet), 5.16 (2H, s), 7.30–7.42 (10H, m). High resolution FABMS m/z calcd for $C_{11}H_{21}N_4O_4S$: 305.1284 (MH⁺); found: 305.1276.

trans-4-(Ethylsulfonyl)-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (20a)

A mixture of trans-4-(ethylsulfonyl)-3-[3-[N',N"-bis-(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (380 mg, 0.66 mmol), MeOH (2.5 mL), EtOAc (2.5 mL), 1 N HCl (0.66 mL) and a catalytic amount of 10% Pd/C was stirred under H₂ until TLC indicated the disappearance of the starting material. The mixture was filtered through a pad of Celite and concentrated to afford **20a** (140 mg, 62%) as a yellow foam. IR (film) 1810, 1720 cm⁻¹; ¹H NMR (CD₃OD) δ 1.42 (3H, t, J = 7.4 Hz), 1.73–2.02 (4H, m), 2.39 (3H, s), 3.19–3.49 (4H, m), 3.70–3.76 (1H, m), 5.27 (1H, d, d) = 3.1 Hz). High resolution FABMS m/z calcd for $C_{11}H_{21}N_4O_4S$: 305.1284 (MH⁺); found: 305.1276.

trans-4-(Phenylthio)-3-[3-[N',N"-bis(carbobenzyloxy)-guanidino]propyl]-2-azetidinone (17b)

PhSH (0.54 g, 4.9 mmol) was added to a suspension of NaH (190 mg of a 60% dispersion in mineral oil, 4.90 mmol) in THF (20 mL). After H_2 evolution had ceased, 15 (1.22 g, 2.45 mmol) was added and the mixture stirred for 30 min. The solvent was removed, the residue diluted with H_2O and extracted with EtOAc to give an

oil which was chromatographed on a column of silica gel. Elution with a mixture of Et₂O and hexane (3:1) afforded 17b (450 mg, 34%). IR (film) 1770, 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 1.55–1.85 (4H, m), 2.96–3.07 (1H, m), 3.36–3.52 (2H, m), 4.64 (1H, bs), 5.10 (2H, s), 5.17 (2H, s), 6.47 (1H, bs), 7.20–7.48 (15H, m), 8.26–8.37 (1H, s).

trans-4-(Phenylthio)-3-[3-[N',N"-bis(carbobenzyloxy)-guanidino]propyl]-1-acetyl-2-azetidinone (18b)

A solution of sodium bis(trimethylsilyl)amide (1 M in THF, 0.8 mL) was added dropwise to a stirred solution of 17b (450 mg, 0.82 mmol) in THF (7 mL) maintained at -78 °C under N₂. After 10 min acetyl chloride (0.054 mL, 0.76 mmol) was added and the mixture was warmed to room temperature. After 30 min the solvent was evaporated, the residue diluted with H₂O and extracted with EtOAc to leave 18b (450 mg, 93%) which was used directly. IR (film) 1800, 1730 cm⁻¹; ¹H NMR (CDCl₃) δ 1.52-1.80 (4H, m), 2.32 (3H, s), 3.03 (1H, dt, J = 8.4 Hz, J' = 2.3 Hz), 3.38 (2H, q, J = 6.9 Hz), 4.82 (1H, d, J = 2.3 Hz), 5.08 (2H, s), 5.12 (2H, s), 7.20-7.53 (15H, s), 8.27 (1H, s), s0.5 (15H, s0.8) m/z calcd for C₃₁H₃₃N₄O₆S: 589.2121; found: 589.2111.

trans-4-(Phenylsulfonyl)-3-[3-[N',N"-bis(carbobenzyl-oxy)guanidino]propyl]-1-acetyl-2-azetidinone

mCPBA (327 mg, 1.52 mmol, 80% purity) was added to a stirred solution of **18b** (450 mg, 0.76 mmol) in CH₂Cl₂ (10 mL). After 20 min the mixture was concentrated, the residue diluted with saturated NaHCO₃ solution and extracted with EtOAc. The residual oil was chromatographed on a column of silica gel using a mixture of Et₂O and hexane (3:1) as eluant to give the title compound (210 mg, 44%). IR (KBr) 1815, 1735 cm⁻¹; ¹H NMR (CDCl₃) δ 1.65–1.95 (4H, m), 2.28 (3H, s), 3.40–3.55 (2H, m), 3.80–3.89 (1H, m), 4.90 (1H, d, d) = 2.3 Hz), 5.08 (2H, d), 5.15 (2H, d), 7.20–7.92 (15H, d), 8.40–8.30 (1H, d). High resolution FABMS m/z calcd for C₁₅H₂₁N₄O₄S: 353.1284; found: 353.1281.

trans-4-(Phenylsulfonyl)-3-(3-guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (20b)

A mixture of trans-4-(phenylsulfonyl)-3-[3-[N',N"-bis-(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (210 mg, 0.34 mmol), MeOH (12.5 mL), EtOAc (12.5 mL), 1 N HCl (0.34 mL) and a catalytic quantity of 10% Pd/C was stirred under H_2 . After the disappearance of the starting material as determined by TLC, the mixture was filtered through a pad of Celite and concentrated to afford **20b** (100 mg, 76%) as a colorless foam. IR (KBr) 1815, 1730 cm⁻¹; ¹H NMR (CD₃OD) δ 1.70–2.01 (4H, m), 2.26 (3H, s), 3.22 (2H, t, J = 6.9 Hz), 3.76–3.83 (1H, m), 5.29 (1H, d, J = 2.9 Hz), 7.60–8.03 (5H, m). High resolution FABMS m/z calcd for $C_{15}H_{21}N_4O_4S$: 353.1284 (MH⁺); found: 353.1281.

3-[3-[N', N"-bis(Carbobenzyloxy)guanidino]propyl]-2-azetidinone

A mixture of 17a (1.80 g, 3.5 mmol), Raney-Nickel (Aldrich) and dioxane (100 mL) was stirred at 60 °C for 30 min. The mixture was filtered to remove the Raney-Nickel and the filtrate concentrated. The residue was chromatographed on a column of silica gel to afford the title product (830 mg, 45%). IR (film) 1755 (shoulder), 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 1.57–1.80 (4H, m), 3.14–3.23 (1H, m), 3.33 (1H, t, t) = 5.4 Hz), 3.35–3.47 (2H, t), 3.88–3.94 (1H, t), 5.05 (2H, t), 5.13 (2H, t), 7.17–7.38 (10H, t). High resolution FABMS m/z calcd for t0.3H₂₇N₄O₅: 439.1981 (MH⁺); found: 439.1976.

3-[3-[N',N''-bis(Carbobenzyloxy)]guanidino]propyl]-l-acetyl-2-azetidinone

A 1 N solution of lithium bis(trimethylsilyl)amide in THF (1.0 mL, 1 mmol) was added to a stirred solution of 3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-2azetidinone (366 mg, 0.84 mmol) in THF (6 mL) maintained at -78 °C under an atmosphere of N₂. After 10 min acetyl chloride (0.071 mL, 1 mmol) was added, the solution was warmed to room temperature and stirred for 1 h. The mixture was diluted with pH 7.0 aqueous buffer and extracted with Et2O. The organic phase was dried over Na₂SO₄, concentrated and the residue chromatographed on a column of silica gel. Elution with a mixture of Et₂O and hexane (9:1) afforded the title product (255 mg, 63%). IR (film) 1792, 1740, 1710 cm⁻¹; ¹H NMR (CDCl₃) δ 1.63–1.96 (4H, m), 2.32 (3/4H, s), 2.33 (9/4H, s), 3.15-3.30 (2H, m), 3.35-3.48 (2H, m), 3.60-3.70 (1H, m), 5.05 (0.5H, s), 5.07 (1.5H, s), 5.12 (0.5H, s), 5.14 (1.5H, s), 7.18-7.40 (10H, m). High resolution FABMS m/z calcd for $C_{25}H_{29}N_4O_6$: 481.2087 (MH⁺); found: 481.2076.

3-(3-Guanidinopropyl)-1-acetyl-2-azetidinone hydrochloride salt (21a)

A solution of 3-[3-[N,N"-bis(carbobenzyloxy)guanidino]propyl]-1-acetyl-2-azetidinone (255 mg, 0.58 mmol) in MeOH (2.5 mL), EtOAc (2.5 mL) and 1 N HCl (0.58 mL), was hydrogenated over 10% Pd/C until TLC indicated the disappearance of the starting material (about 10 min). The suspension was filtered through a pad of Celite and the filtrate concentrated to afford **21a** (99 mg, 69%) as a yellow foam. IR (film) 1790, 1700 (shoulder), 1670 cm⁻¹; ¹H NMR (CD₃OD) δ 1.65–1.87 (4H, m), 2.31 (3H, s), 3.16–3.40 (4H, m), 3.70 (1H, t, t) = 6.7 Hz). High resolution FABMS m/z calcd for $C_8H_{17}N_4O_7$: 213.1352 (MH⁺); found: 213.1349.

3-[3-[N',N"-bis(Carbobenzyloxy)guanidino]propyl]-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone

A 1 N solution of lithium bis(trimethylsilyl)amide (1.00 mL, 1 mmol) was added to a stirred solution of 3-[3-[N', N"-bis(carbobenzyloxy)guanidino]propyl]-2-azetidinone (650 mg, 1.48 mmol) in THF (5 mL) maintained at -78 °C under an atmosphere of N₂. After 10 min

dansyl chloride (399 mg, 1.48 mmol) was added and the solution warmed to room temperature. After stirring for 1 h the solvent was evaporated and the residue partitioned between EtOAc and pH 7.0 aqueous buffer. The organic phase was washed with brine, dried over Na_2SO_4 and concentrated. The residue was chromatographed on a column of silica gel using a mixture of Et_2O and hexane (4:1) as eluant to afford the title compound (186 mg, 19%). IR (KBr) 1798, 1738 cm⁻¹; ¹H NMR (CDCl₃) δ 1.47–1.70 (4H, m) 2.80 (6H, s), 3.16–3.34 (3H, m), 3.59–3.67 (1H, m), 5.05 (2H, s), 5.13 (2H, s), 7.20–7.35 (10H, m), 7.47–7.57 (2H, m), 8.28 (1H, d, d) = 9.2 Hz), 8.33 (1H, d), d) = 9.2 Hz), 8.56 (1H, d), d) = 9.2 Hz). High resolution FABMS m/z calcd for $C_{37}H_{38}N_5O_7S$: 672.2492 (MH⁺); found: 672.2479.

3-(3-Guanidinopropyl)-1-[5-(dimethylamino)-1-naphthalenesulfonyl)]-2-azetidinone hydrochloride salt (21b)

A solution of 3-[3-[N',N"-bis(carbobenzyloxy)guanidino]propyl]-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone (186 mg, 0.28 mmol) in MeOH (2.5 mL), EtOAc (2.5 mL) and 1 N HCl (0.28 mL) was hydrogenated over 10% Pd/C until TLC indicated the disappearance of the starting material. The suspension was filtered through a pad of Celite and the filtrate concentrated to leave **21b** (90 mg, 73%). IR (film) 1795 cm⁻¹; ¹H NMR (CD₃OD) δ 1.43–1.61 (4H, m), 2.93 (6H, s), 2.99–3.31 (3H, m), 3.64 (1H, t, J = 5.9 Hz), 7.41 (1H, d, J = 7.5 Hz), 7.57–7.68 (2H, m), 8.27 (1H, d, J = 7.4 Hz), 8.45 (1H, d, J = 7.6 Hz), 8.59 (1H, d, J = 7.7 Hz). High resolution FABMS m/z calcd for $C_{19}H_{26}N_3O_5S$: 404.1756 (MH⁺); found: 404.1752.

6-[N',N"-bis(Carbobenzyloxy)guanidino]hexanoic acid

A mixture of N,N-bis(carbobenzyloxy)-S-methyl-isothiourea (60.00 g, 0.18 mol), Et₃N (18.20 g, 0.18 mol) and 6-aminocaproic acid (23.30 g, 0.18 mol) in MeOH (350 mL) was stirred at reflux for 30 min and at room temperature for 4 h. The solution was concentrated, the residue diluted with H_2O and extracted with EtOAc. The organic phase was separated, dried over MgSO₄ and concentrated to leave a solid which was recrystallized from EtOAc and hexane to afford the title compound (52.30 g, 66%), mp 93 °C. IR (KBr) 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 1.30–1.45 (2H, m), 1.50–1.71 (4H, m), 2.33 (2H, d, d) = 6.9 Hz), 3.34–3.47 (2H, d), 5.10 (2H, d), 5.17 (2H, d), 7.20–7.43 (10H, d). Anal. calcd for $C_{23}H_{27}N_3O_6$: C, 61.81; H, 5.89; N, 9.52; found: C, 61.39; H, 6.29; N, 9.65.

6-[N',N"-bis(Carbobenzyloxy)guanidino)hexanoic acid methyl ester

Carbonyldiimidazole (21.40 g, 0.132 mol) was added to solution of 6-[N,N"-bis(carbobenzyloxy)guanidino]hexanoic acid (50.8 g, 0.12 mol) in THF (300 mL) and the mixture stirred at room temperature for 1 h. MeOH (75 mL) was added and the mixture stirred for 19 h before being concentrated. The residue was partitioned between H_2O and Et_2O , the organic phase separated and

dried over MgSO₄. The solvent was evaporated and the residue chromatographed on a column of silica gel using a mixture of Et₂O and hexane (1:1) as eluant to afford the title compound (22.80 g, 42%). IR (film): 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 1.28–1.42 (2H, m), 1.50–1.68 (4H, m), 2.27 (2H, t, J = 6.9 Hz), 3.38 (2H, q, J = 6.1 Hz), 3.64 (3H, s), 5.12 (2H, s), 5.16 (2H, s), 7.20–7.42 (10H, m). Anal. calcd for C₂₄H₂₉N₃O₆: C, 63.28; H, 6.42; N, 9.23; found: C, 63.30; H, 6.51; N, 9.26.

trans-4-(2-Phenylethenyl)-3-[4-[N',N"-bis(carbobenzyl-oxy)guanidino]butyl]-2-azetidinone

n-BuLi in THF (60 mL of a 2.5 M solution, 0.15 mol) was added to a stirred solution of hexamethyldisilazane (24.15 g, 0.15 mol) in THF (15 mL) maintained at -40 °C under N₂. After 1 h the mixture was cooled to -78 °C and a solution of 6-[N',N"-bis(carbobenzyloxy)guanidino)hexanoic acid methyl ester (22.20 g, 0.05 mol) in THF (30 mL) was added. After stirring at -78 °C for 1 h the mixture was stirred at -30 °C for 1 h before being cooled to -78 °C. A solution of 1,1,1-trimethyl-N-(3phenyl-2-propen-1-ylidene)silanamine (10.20 g, 0.05 mol) in THF (30 mL) was added, the mixture stirred at -30 °C for 30 min and then stood at -20 °C for 16 h. The mixture was concentrated to half of its original volume, diluted with Et₂O and sufficient 1 N HCl added to maintain the pH of the aqueous phase below 2.0. The organic phase was separated, washed with H₂O and brine, dried over MgSO₄ and concentrated. The residue was chromatographed on a column of silica gel using a mixture of Et₂O and EtOAc (9:1) as eluant to afford the title compound (6.80 g, 36%). IR (KBr) 1760, 1733 cm⁻¹; ¹H NMR (CDCl₃) δ 1.40–1.92 (6H, m), 2.95 (1H, bt, J =6.6 Hz), 3.37-3.48 (2H, q, J = 6.6 Hz), 3.93 (1H, dd, J =8.4 Hz, J = 2.0 Hz), 5.10 (2H, s), 5.17 (2H, s), 6.18 (1H, dd, J = 15.3 Hz, J' = 8.4 Hz), 6.58 (1H, d, J = 15.3)Hz), 7.20-7.43 (15H, m). High resolution FABMS m/z calcd for C₃₂H₃₅N₄O₅: 555.2607 (MH⁺); found: 555.2594.

trans-4-(2-Phenylethenyl)-3-[4-[N',N"-bis(carbobenzyloxy)guanidino]butyl]-1-(tert-butyldimethylsilyl)-2-azetidinone

Et₃N (2.05 g, 20 mmol) and tert-butyldimethylsilyl chloride (3.05 g, 20 mmol) were added to a stirred solution of trans-4-(2-phenylethenyl)-3-[4-[N',N"-bis-(carbobenzyloxy)guanidino]butyl]-2-azetidinone (6.80 g, 12.3 mmol) in DMF (25 mL) maintained at 0 °C. The mixture was stirred at room temperature for 1.5 h, diluted with pH 7.0 aqueous buffer and extracted with Et₂O. The organic extracts were dried over MgSO₄ and concentrated and the residue chromatographed on a column of silica gel to afford the title compound (8.40 g, 100%). IR (film) 1735 cm⁻¹; ¹H NMR (CDCl₃) δ 0.1 (3H, s), 0.2 (3H, s), 0.9 (9H, s), 1.35–1.85 (6H, m), 2.87-2.95 (1H, m), 3.37 (2H, q, J = 6.1 Hz), 3.77 (1H, dd, J = 8.4 Hz, J' = 2.0 Hz), 5.05 (2H, s), 5.1 (2H, s), 6.10 (1H, dd, J = 16.8 Hz, J' = 8.4 Hz), 6.52 (1H, d, J =16.8 Hz), 7.15-7.40 (15H, m). High resolution FABMS m/z calcd for $C_{38}H_{49}N_4O_5Si$: 669.3472 (MH⁺); found: 669.3466.

trans-4-(Methoxycarbonyl)-3-[4-[N',N"-bis(carbobenzyl-oxy)guanidino]butyl]-2-azetidinone

Ozone was bubbled through solution of trans-4-(2-phenylethenyl)-3-[4-[N,N"-bis(carbobenzyloxy)guanidino]butyl] -1-(tert-butyldimethylsilyl)-2-azetidinone (8.20 g, 12 mmol) in CH₂Cl₂ (100 mL) stirred at -78 °C. When the solution retained a blue color, Me₂S (10 mL) was added and the mixture warmed to room temperature. After standing for 16 h, the solvent was evaporated to leave trans-1-formyl-3-[4-[N,N"-bis(carbobenzyloxy)guanidino]butyl]-1-(tert-butyldimethylsilyl)-2-azetidinone which was used directly.

The aldehyde was dissolved in acetone (100 mL) and Jones reagent added dropwise with stirring until TLC indicated the disappearance of starting material. The mixture was stirred for 2 h, concentrated to one third of its original volume and diluted with H₂O. The mixture was extracted with EtOAc, the organic phase dried over MgSO₄ and concentrated. The residue was chromatographed on a column of silica gel using a mixture of EtOAc and AcOH (99:1) as eluant to afford a dark oil (0.60 g) which was dissolved in CH₂Cl₂. An ethereal solution of diazomethane was added dropwise until a yellow color persisted. The excess diazomethane was destroyed by adding AcOH, the solution concentrated and the residue chromatographed on a column of silica gel. Elution with Et₂O afforded the title compound (250 mg, 24% overall yield). ¹H NMR (CDCl₃) δ 1.37-1.89 (6H, m), 3.17 (1H, bt, J = 9.0 Hz), 3.38 (2H, q, J = 6.1)Hz), 5.07 (2H, s), 5.13 (2H, s), 7.20-7.38 (10H, m). High resolution FABMS m/z calcd for $C_{26}H_{31}N_4O_7$: 511.2193 (MH⁺); found: 511.2182.

trans-4-(Methoxycarbonyl)-3-[4-[N',N"-bis(carbobenzyl-oxy)guanidino]butyl]-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone

Sodium bis(trimethylsilyl)amide in THF (0.55 mL of a 1 N solution) was added to a solution of trans-4-(methoxycarbonyl)-3-[4-[N',N"-bis(carbobenzyloxy)guanidino]butyl]-2-azetidinone (250 mg, 0.49 mmol) in THF (3 mL) stirred at -78 °C under N₂. The mixture was stirred for 20 min and a solution of dansyl chloride (0.135 g, 0.5 mmol) in THF (1 mL) added. The mixture was warmed to room temperature and concentrated. The residue was partitioned between EtOAc and aqueous pH 7.0 buffer, the organic layer separated, dried over MgSO₄ and concentrated. The residue was subjected to chromatography on a column of silica gel to furnish the title compound (141 mg, 39%). H NMR (CDCl₃) δ 1.36-1.81 (6H, m), 2.85 (6H, s), 3.22-3.34 (3H, m), 3.45 (3H, s), 4.21 (1H, d, J = 3.1 Hz), 5.09 (2H, s), 5.15 (2H, s), 7.17-7.37 (11H, m), 7.53 (1H, t, J = 7.5 Hz), 7.60 (1H, t, J = 7.6 Hz), 8.27 (1H, d, J = 6.2 Hz), 8.47 (1H, d, J = 8.7 Hz), 8.59 (1H, d, J = 8.5 Hz). FABMS m/z: 744 (MH+).

trans-4-(Methoxycarbonyl)-3-(4-guanidinobutyl)-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone hydrochloride salt (23)

A solution of trans-4-(methoxycarbonyl)-3-[4-[N,N"-

bis (c a rbo be nz y lo xy)guanidino]butyl]-1-[5-(dimethylamino)-1-naphthalenesulfonyl]-2-azetidinone (130 mg, 0.18 mmol) in MeOH (3 mL), EtOAc (1 mL) and 1 N HCl was hydrogenated over 10% Pd/C for 16 h. The mixture was filtered through a pad of Celite and the filtrate concentrated to afford 23 (45 mg, 50%). IR (film) 1807, 1753 cm⁻¹; ¹H NMR (CD₃OD) δ 1.20–1.88 (6H, m), 3.03–3.33 (3H, m), 3.44 (6H, s), 3.49 (3H, s), 4.52 (1H, s), 7.89–7.94 (2H, m), 8.10 (1H, d, d) = 6.9 Hz), 8.43 (1H, d, d) = 7.1 Hz), 8.86 (1H, d, d) = 8.2 Hz), 8.99 (1H, d), d) = 8.5 Hz). High resolution FABMS m/z calcd for $C_{22}H_{30}N_5O_5S$: 467.1968 (MH⁺); found: 476.1978.

Biological evaluation

Enzyme assays for the inhibition of thrombin. For evaluation of thrombin enzymatic activity, 3 mM D-Phe-Pip-Arg-p-nitroanilide (s-2238) dissolved in $\rm H_2O$ was used as the substrate for 3 U mL⁻¹ of purified human α -thrombin, which was dissolved in a buffer. The assay buffer comprised 145 mM NaCl, 5 mM KCl, 30 mM N-2-hydroxyethyl piperazine-N-2-ethanesulfonic acid, pH 7.4 and 1 mg mL⁻¹ polyethylene glycol (PEG-8000). Test compounds were dissolved in $\rm H_2O$, methanol or DMSO immediately prior to use.

270 μL of assay buffer was added to each well in a 96-well microtiter plate followed by human α -thrombin (10 μL of 3 U mL⁻¹) and 10 μL of the inhibitor. The samples were incubated at room temperature for a defined period of time (3 min for initial IC₅₀ determinations). The enzymic reaction was initiated by adding 10 μL of 3 mM s-2238 substrate and the reaction allowed to proceed at room temperature. A kinetic microplate reader (Molecular Devices Corporation Vmax) was used to measure the change in optical density, measured at 405 nm, over time.

Enzyme assays for the inhibition of trypsin. 3 mM Z-Val-Gly-Arg-pNA (Chromzyme TRY) dissolved in H_2O was used as the substrate for 6 μ g mL⁻¹ of purified bovine pancreatic trypsin dissolved in an assay buffer. The trypsin assay buffer comprised 2 mM CaCl₂, 50 mM Tris/Cl pH 8.0. Test compounds were dissolved in H_2O , methanol or DMSO immediately prior to use.

270 μ L of assay buffer was added to each well in a 96-well microtiter plate followed by bovine trypsin (10 μ L of a 6 μ g mL⁻¹ solution) and the test compound (10 μ L). The mixture was incubated at room temperature for 3 min before initiating the enzymic reaction by introducing 10 μ L of a 3 mM solution of the substrate, Z-Val-Gly-Arg-pNA. A kinetic microplate reader (Molecular Devices Corporation Vmax) was used to measure the change in optical density at 405 nm over time.

Procedure for determining the concentration of drug required to double thrombin-induced clotting time of human plasma. Preparation of human citrated plasma: blood from human volunteers was drawn into vacutainer

tubes containing one tenth final volume of 0.129 M (3.8%) buffered citrate (16 mg Na₃citrate·2H₂O and 2.1 mg citric acid per mL of H₂O). The blood was centrifuged at 3500 rpm (480 g) for 15 min at room temperature using a Sorvall RT 6000B centrifuge. The plasma was removed, pooled, and aliquoted into small tubes which were stored frozen for later use.

Clotting times were determined by pipetting 0.1 mL of Owren's buffer (125 mM NaCl, 28.4 mM sodium barbital, pH 7.35), pre-warmed to 37 °C, and 0.1 mL of human plasma into yellow sample cuvettes. 10 U mL⁻¹ human thrombin in the thrombin buffer described above (10 mL) was placed in the reservoir assembly station of a Medical Laboratory Automation, Electra 700 Reservoir Assembly (MLA 700). The cuvettes were vortexed and then placed on the MLA 700 sample wheel. The coagulation timer (MLA 700) automatically dispenses 0.1 mL human thrombin into the sample in each cuvette. Detection of the fibrin clot was determined optically by the MLA 700.

Studies were performed to determine the concentration of drug which caused a doubling of the clotting time in human plasma. From standard curves of thrombin activity added to the sample versus the clotting time, the concentration of drug which caused a doubling of the thrombin clotting time corresponded to inhibition of approximately 1/2 of the added thrombin clotting activity.

References and Notes

- 1. Thrombin Structure and Function, Berliner, L. T. E., Ed.; Plenum Press; New York, 1992.
- 2. Bioregulatory Functions of Thrombin, Vol. 485, Walz, D. A.; Fenton, II J. W.; Shuman, M. A. Eds; Ann. New York Acad. Sci., 1986.
- 3. Fenton, J. W.; Ofosu, F. A.; Moon, D. G.; Maraganore, J. M. Blood Coagulation and Fibrinolysis 1991, 2, 69.
- 4. Taylor, Jr F. B. Surv. Synth. Pat. Res. 1983, 1, 251.
- 5. Talbot, M. D.; Butller, K. D. Drugs News Perspect. 1992, 3, 357
- 6. (a) Vu, T.-K. H.; Wheaton, V. I.; Hung, D. T.; Charo, I.; Coughlin, S. R. *Nature* 1991, 353, 647; (b) Vu, T.-K. H.; Hung, D. T.; Wheaton, V. I.; Coughlin, S. R. *Cell* 1991, 64, 1057; (c) Liu, L. W.; Vu, T.-K. H.; Esmon, C. T.; Coughlin, S. R. *J. Biol. Chem.* 1991, 266, 16977.
- 7. (a) Coughlin, S. R. Trends Cardiovasc. Med. 1994, 4, 77; (b) Coughlin, S. R.; Vu, T.-K. H.; Hung, D. T.; Wheaton, V. I J. Clin. Invest. 1992, 89, 351.
- 8. Ogletree, M. L.; Natarajan, S.; Seiler, S. M. Perspectives Drug Disc. Design 1994, 1, 527.
- 9. Stürzebecher, J. In: *The Thrombin*, Vol. 1, Chapter 7, pp. 131-160, Machovich, R. Ed.; CRC Press; Boca Raton, FL, 1984.
- 10. Wallis, R. B. Drugs Today 1989, 25, 597.
- 11. Brundish, D. E. Current Opinion in Therapeutic Patents 1992, 1457.

12. Tapparelli, C.; Metternich, R.; Ehrhardt, C.; Cook, N. S. Trends Pharmacol. Sci. 1993, 14, 366.

- 13. Lyle, T. A. Perspectives Drug Disc. Design 1993, 1, 453.
- 14. Grau, M. Drugs Future 1982, 7, 810.
- 15. Kikumoto, R.; Tamao, Y.; Tezuka, T.; Tonamura, S.; Hara, H.; Ninomiya, K.; Hijikata, A.; Okamoto, S. Biochemistry 1984, 23, 85.
- 16. Powers, J. C.; Harper, J. W. In: *Proteinase Inhibitors*, Chapter 3, Barrett, A. J.; Salvesen, G., Eds; Elsevier; Amsterdam, 1986.
- 17. Kettner, C.; Mersinger, L.; Knabb, R. J. Biol. Chem. 1990, 265, 18289.
- 18. Kettner, C.; Shaw, E. Thromb. Res. 1979, 14, 969.
- 19. Collen, D.; Matsuo, O.; Stassen, J. M.; Kettner, C.; Shaw, E. J. Lab. Clin. Med. 1982, 99, 76.
- Hanson, S. R.; Harker, L. A.; Proc. Natl Acad. Sci. U.S.A. 1988, 85, 3184.
- 21. (a) Bode, W.; Mayr, I.; Baumann, U.; Huber, R.; Stone, S. R.; Hofsteenge, J. *EMBO J.* **1989**, *8*, 3467; (b) Bode, W.; Turk, D.; Karshikov, A. *Protein Sci.* **1992**, *1*, 426.
- 22. Banner, D. W.; Hadvary, P. J. Biol. Chem. 1991, 266, 20085.
- 23. Grutter, M. G.; Priestle, J. P.; Rahuel, J.; Grossenbacher, H.; Bode, W.; Hofsteenge, J.; Stone, S. R. *EMBO J.* **1990**, *9*, 2361.
- 24. Angliker, H.; Wikström, P.; Rauber, P.; Stone, S.; Shaw, E. *Biochem. J.* 1988, 256, 481.
- 25. Gelb, M. H.; Abeles, R. H. J. Med. Chem. 1986, 29, 585.
- 26. Kam, C.-M.; Copher, J. C.; Powers, J. C. J. Am. Chem. Soc. 1987, 109, 5044.
- 27. Kam, C.-M.; Fujikawa, K.; Powers, J. C. *Biochemistry* 1988, 27, 2547.
- 28. Rai, R.; Katzenellenbogen, J. A. J. Med. Chem. 1992, 35, 4150.
- 29. (a) Ueda, T.; Kam, C.-M.; Powers, J. C. *Biochem. J.* 1990, 265, 539; (b) Iwanowicz, E. J.; Lin, J.; Roberts, D. G. M.; Michel, I. M.; Seiler, S. M. *Bioorg. Med. Chem. Lett.* 1992, 2, 1607.
- 30. Bajusz, S.; Szell, E.; Bagdy, D.; Barbas, E.; Horvath, G.; Dioszegi, M.; Fittler, Z.; Szabo, G.; Juhasz, A.; Tomori, E.; Szilagyi, G. J. Med. Chem. 1990, 33, 1729.
- 31. Shuman, R. T.; Rothenberger, R. B.; Campbell, C. S.; Smith, G. F.; Gifford-Moore, D. S.; Gesellchen, P. D. *J. Med. Chem.* 1993, 36, 314.
- 32. Balasubramanian, N.; St Laurent, D. R.; Federici, M. E.; Meanwell, N. A.; Wright, J. J.; Schumacher, W. A.; Seiler, S. M. J. Med. Chem. 1993, 36, 300.
- 33. Firestone, R. A.; Barker, P. L. U.S. Patent 4,680,391, 14 July 1987.
- 34. Doherty, J. B.; Ashe, B. M.; Argenbright, L. W.; Barker, P. L.; Bonney, R. J.; Chandler, G. O.; Dahlgreen, M. E.; Dorn, Jr C. P.; Finke, P. E.; Firestone, R. A.; Fletcher, D.; Hagmann, W. K.; Mumford, R.; O'Grady, L.; Maycock, A. L.; Pisano, J. M.; Shah, S. K.; Thompson, K. R.; Zimmerman, M. Nature 1986, 322, 192.
- 35. Navia, M. A.; Springer, J. P.; Lin, T.-Y.; Williams, H. R.;

- Firestone, R. A.; Pisano, J. M.; Doherty, J. B.; Finke, P. E.; Hoogsteen, K. *Nature* 1987, 327, 79.
- 36. Hagmann, W. K.; Shah, S. K.; Dorn, C. P.; O'Grady, L. A.; Hale, J. J.; Finke, P. E.; Thompson, K. R.; Brause, K. A.; Ashe, B. M.; Weston, H.; Dahlgreen, M. E.; Maycock, A. L.; Dellea, P. S.; Hand, K. M.; Osinga, D. G.; Bonney, R. J.; Davies, P.; Fletcher, D. S.; Doherty, J. B. Bioorg. Med. Chem. Lett. 1991, 1, 545.
- 37. Hagmann, W. K.; Thompson, K. R.; Shah, S. K.; Finke, P. E.; Ashe, B. M.; Weston, H.; Maycock, A. L.; Doherty, J. B. Bioorg. Med. Chem. Lett. 1992, 2, 681.
- 38. Finke, P. E.; Shah, S. K.; Ashe, B. M.; Ball, R. G.; Blacklock, T. J.; Bonney, R. J.; Brause, K. A.; Chandler, G. O.; Cotton, M.; Davies, P.; Dellea, P. S.; Dorn, Jr C. P.; Fletcher, D. S.; O'Grady, L. A.; Hagmann, W. K.; Hand, K. M.; Knight, W. B.; Maycock, A. L.; Mumford, R. A.; Osinga, D. G.; Sohar, P.; Thompson, K. R.; Weston, H.; Doherty, J. B. J. Med. Chem. 1992, 35, 3731.
- 39. Shah, S. K.; Dorn, Jr C. P.; Finke, P. E.; Hale, J. J.; Hagmann, W. K.; Brause, K. A.; Chandler, G. O.; Kissinger, A. L.; Ashe, B. M.; Weston, H.; Knight, W. B.; Maycock, A. L.; Dellea, P. S.; Fletcher, D. S.; Hand, K. M.; Mumford, R. A.; Underwood, D. J.; Doherty, J. B. J. Med. Chem. 1992, 35, 3745.
- 40. Finke, P. E.; Dahlgreen, M. E.; Weston, H.; Maycock, A. L.; Doherty, J. B. Bioorg. Med. Chem. Lett. 1993, 3, 2277.
- 41. Thompson, K. R.; Finke, P. E.; Shah, S. K.; Ashe, B. M.; Dahlgreen, M. E.; Maycock, A. L.; Doherty, J. B. *Bioorg. Med. Chem. Lett.* **1993**, *3*, 2283.
- 42. Thompson, K. R.; Finke, P. E.; Shah, S. K.; Ashe, B. M.; Dahlgreen, M. E.; Dellea, P. S.; Fletcher, D. S.; Hand, K. M.; Maycock, A. L.; Doherty, J. B. *Bioorg. Med. Chem. Lett.* 1993, 3, 2289.
- 43. Shah, S. K.; Finke, P. E.; Brause, K. A.; Chandler, G. O.; Ashe, B. M.; Weston, H.; Maycock, A. L.; Mumford, R. A.; Doherty, J. B. *Bioorg. Med. Chem. Lett.* 1993, 3, 2295.
- 44. Firestone, R. A.; Barker, P. L.; Pisano, J. M.; Ashe, B. M.; Dahlgren, M. E. *Tetrahedron* 1990, 46, 2255.
- 45. Alpegiani, M.; Bissolino, P.; Borghi, D.; Corigli, R.; Del Nero, S.; Perrone, E.; Razzano, G.; Rizzo, V. *Bioorg. Med. Chem. Lett.* 1992, 2, 1127.
- 46. Alpegiani, M.; Bissolino, P.; Borghi, D.; Rizzo, V.; Perrone, E. Bioorg. Med. Chem. Lett. 1993, 3, 2259.
- 47. Rizzo, V.; Borghi, D.; Sacchi, N.; Alpegiani, M.; Perrone, E. Bioorg. Med. Chem. Lett. 1993, 3, 2265.
- 48. Faraci, W. S.; Bakker, A. V.; Spencer, R. W.; Williams, R. A.; Jasys, V. J.; Kellogg, M. S.; Volkmann, R. A. Bioorg. Med. Chem. Lett. 1993, 3, 2271.
- 49. Han, W. T. U.S. Patent 5,037,819, 6 August 1991.
- 50. Han, W. T. U.S. Patent 5,250,677, 5 October 1993.
- 51. Trehan, A. K.; Han, W. T.; Meanwell, N. A.; Wright, J. J. K.; Federici, M. E.; Seiler, S. M. 205th National Meeting of the American Chemical Society, Denver, CO, 28 March-2 April 1993, MEDI 110.
- 52. Nowak, K.; Kania, L. Rocz. Chem. 1969, 43, 1953 (Chem. Abs. 1970, 72, 67246q).
- 53. Bergeron, R. J.; McManis, J. S. J. Org. Chem. 1987, 52,
- 54. Staab, H. A. Angew. Chem. Int. Ed. Engl. 1962, 1, 351.

- 55. Hart, D. J.; Kanai, K.; Thomas, D. G.; Yang, T. K. J. Org. Chem. 1983, 48, 289.
- 56. Cainelli, G.; Contento, M.; Giacomini, D.; Panunzio, M. Tetrahedron Lett. 1985, 26, 937.
- 57. Cainelli, G.; Panunzio, M.; Basile, T.; Bongini, A.; Giacomini, D.; Martelli, G. J. Chem. Soc. Perkin Trans. 1. 1987, 2637.
- 58. Cainelli, G.; Panunzio, M.; Andreoli, P.; Martelli, G.; Spunta, G.; Giacomini, D.; Bandini, E. Pure Applied Chem. 1990, 62, 605.
- 59. Cainelli, G.; Panunzio, M. Il Farmaco 1991, 46, 177.
- 60. Kruger, C.; Rochow, E. G.; Wannagat, U. Chem. Ber. 1963, 96, 2132.
- 61. Reider, P. J.; Grabowski, E. J. J. Tetrahedron Lett. 1982, 23, 2293.

(Received in U.S.A. 20 January 1995)

- 62. Bouffard, F. A.; Christensen, B. G. J. Org. Chem. 1981, 46, 2208.
- 63. Shioiri, Y.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203.
- 64. Davies, D. E.; Storr, R. C. In: Comprehensive Heterocyclic Chemistry, Chapter 5.09, Katrizky, A. R.; Rees, C. W., Eds; Pergamon Press, 1984.
- 65. Clau β, K.; Grimm, D.; Prossel, G. Annalen 1974, 539.
- 66. Izquierdo, C.; Burguillo, F. J. Int. J. Biochem. 1989, 21, 579.
- 67. Kitz, R.; Wilson, I. B. J. Biol. Chem. 1962, 237, 3245.
- 68. Many of the β -lactam derivatives prepared as part of this study were evaluated as potential antibacterial agents against a broad spectrum of representative organisms. None showed significant anti-bacterial properties.